百度文库 - 让每个人平等地提升自我!
机 密★启用前
大连理工大学网络教育学院
2014年3月份《复变函数与积分变换》课程考试 模拟试卷答案
考试形式:闭卷 试卷类型:B
一、单项选择题(本大题共10小题,每小题2分,共20分)
1、B
2、D
3、C
4、D
5、A
6、B
7、B
8、A
9、B
10、B
二、填空题(本大题共10小题,每小题3分,共30分)
x1、2
x?y23、2?i 5、e?6s2、
?2?k?(k?0,?1,?)
4、1?i 6、
1(1?e?4t) 47、发散 9、2
8、1 10、反演
三、计算题(本大题共5小题,每小题8分,共40分)
1、出处:参考课件第一章复数与复变函数第六节复变函数的极限与连续性
解法1步骤:1、设f(z)?u(x,y)?iv(x,y),将f(z)也写成复变函数的形式。(2分
2、根据定理:函数f(z)?u(x,y)?iv(x,y)在z0?x0?iy0处连续的充要条件是:u(x,y)和v(x,y)在(x0,y0)处连续,得出结论。(6分)
解法2步骤:1、根据复变函数连续性定义:设f(z)为定义在z0的邻域内的函数,若limf(z)?f(z0),
z?z0则称函数f(z)在点z0连续。(3分)
2、根据|f(z)?f(z0)|?|f(z)?f(z0)|?|f(z)?f(z0)|(2分),得出结论。(3分) 2、出处:参考课件第五章留数第二节留数 步骤:1、判断函数的奇点(2分)
1大工《复变函数与积分变换》课程考试 模拟试卷(B)答案 第1页 共2页
2、将分子分母各函数展开成幂级数展开式的形式,得出原函数展开成幂级数展开式的形式。(4分) 3、得出原函数在奇点z?0处的留数(2分)
3、出处:参考课件第五章留数第一节孤立奇点
(?1)k2k?1z步骤1、已知sinz??,将原函数展开成幂级数的展开式形式。(4分)
(2k?1)!k?0? 2、判断奇点是什么和其类型。(4分)
4、出处:参考课件第七章傅里叶变换第二节傅里叶变换
步骤1、根据傅里叶变换定义,将原式代入。(3分) 2、根据欧拉公式,得出结论。(5分)
5、出处:参考课件第二章解析函数第二章解析函数的概念
步骤:1、根据导数的定义,将原式代入。(4分) 2、得出结论(4分)
四、证明题(本大题1小题,共10分)
出处:参考课件第二章解析函数第二节函数解析的充要条件 步骤:1、将原式写成z?x?iy的形式(2分)
2、根据柯西—黎曼条件证明原函数不解析(8分)
2大工《复变函数与积分变换》课程考试 模拟试卷(B)答案 第2页 共2页