14.2.2 完全平方公式
一、选择题:
1.下列式子能成立的是( )
A.(a?b)2 = a2?ab+b2 B.(a+3b)2 = a2+9b2 C.(a+b)2 = a2+2ab+b2 D.(x+3)(x?3) = x2?x?9 2.下列多项式乘法中,可以用平方差公式计算的是( ) A.( 2m?3n)(3n? 2m) B.(?5xy+4z)(?4z?5xy)
C.(?12a?13b)( 13b+12a) D.(b+c?a)(a?b?c)
3.下列计算正确的是( )
A.( 2a+b)( 2a?b) = 2a2?b2 B.(0.3x+0.2)(0.3x?0.2) = 0.9x2?0.4 C.(a2+3b3)(3b3?a2) = a4?9b6 D.( 3a?bc)(?bc? 3a) = ? 9a2+b 2c2 4.计算(?2y?x)2的结果是( )
A.x2?4xy+4y2 B.?x2?4xy?4y 2 C.x2+4xy+4y2 D.?x2+4xy?4y25.下列各式中,不能用平方差公式计算的是( ) A.(?2b?5)(2b?5) B.(b2+2x2)(2x2?b2) C.(?1? 4a)(1? 4a) D.(?m2n+2)(m2n?2) 6.下列各式中,能够成立的等式是( ) A.(x+y)2 = x2+y2 B.(a?b)2 = (b?a)2
C.(x?2y)2 = x2?2xy+y2 D.(112a?b)2 =4a2+ab+b2
二、解答题:
1.计算:
(1)(
13x+23y2)( 13x?23y2); (2)(a+2b?c)(a?2b+c);
(3)(m?2n)(m2+4n2)(m+2n); (4)(a+2b)( 3a?6b)(a2+4b2); (5)(m+3n)2(m?3n)2;
1
(6)( 2a+3b)2?2( 2a+3b)(a?2b)+(?a+2b)2.
2.利用乘法公式进行简便运算: ①20042; ②999.82;
③(2+1)(22+1)(24+1)(28+1)(216+1)+1
2
参考答案
一、选择题 1. 答案:C
说明:利用完全平方公式(a?b)2 = a2?2ab+b2,A错;(a+3b)2 = a2+ 2a(3b)+(3b)2 = a2+6ab+9b2,B错;(a+b)2 = a2+2ab+b2,C正确;利用平方差公式(x+3)(x?3) = x2?9,D错;所以答案为C. 2. 答案:B
说明:选项B,(?5xy+4z)(?4z?5xy) = (?5xy+4z)(?5xy ?4z),符合平方差公式的形式,可以用平方差公式计算;而选项A、C、D中的多项式乘法都不符合平方差公式的形式,不能用平方差公式计算,所以答案为B. 3. 答案:D
说明:( 2a+b)( 2a?b) = ( 2a)2?b2 = 4a2?b2,A错;(0.3x+0.2)(0.3x?0.2) = (0.3x)2?0.22 = 0.09x2?0.04,B错;(a2+3b3)(3b3?a2) = (3b3)2?(a2)2 = 9b6?a4,C错;( 3a?bc)(?bc? 3a) = (?bc)2?( 3a)2 = b 2c2? 9a2 = ? 9a2+b 2c2,D正确;所以答案为D. 4. 答案:C
说明:利用完全平方公式(?2y?x)2 = (?2y)2+2(?2y)(?x)+(?x)2 = 4y2+4xy+x2,所以答案为C. 5. 答案:D
说明:选项D,两个多项式中?m2n与m2n互为相反数,2与?2也互为相反数,因此,不符合平方差公式的形式,不能用平方差公式计算,而其它三个选项中的多项式乘法都可以用平方差公式计算,答案为D. 答案:B
说明:利用完全平方公式(x+y)2 = x2+2xy+y2,A错;(x?2y)2 = x2?2x(2y)+(2y)2
1111a?b)2 = (a)2?2(a)b+b2 =a2?ab+b2,D错;只有B2224中的式子是成立的,答案为B.
= x2?4xy+4y2,C错;(
二、解答题
12121241x+y2)( x?y2) = (x)2?(y2)2 =x2?y4. 33393339 (2) (a+2b?c)(a?2b+c)
1. 解:(1)(
3
= [a+(2b?c)][a?(2b?c)] = a2?(2b?c)2 = a2?(4b2?4bc+c2) = a2?4b2+4bc?c2
(3)(m?2n)(m2+4n2)(m+2n) = (m?2n)(m+2n)(m2+4n2) = (m2?4n2)(m2+4n2) = m4?16n4
(4)(a+2b)( 3a?6b)(a2+4b2) = (a+2b)?3?(a?2b)(a2+4b2) = 3(a2?4b2)(a2+4b2) = 3(a4?16b4) = 3a4?48b4
(5) 解1:(m+3n)2(m?3n)2 = (m2+6mn+9n2)(m2?6mn+9n2) = [(m2+9n2)+6mn][(m2+9n2)?6mn] = (m2+9n2)2?(6mn)2 = m4+ 18m2n2+81n4? 36m2n2 = m4? 18m2n2+81n4 解2:(m+3n)2(m?3n)2 = [(m+3n)(m?3n)]2 = [m2?(3n)2]2 = (m2?9n2)2 = m4? 18m2n2+81n4
(6)解1:( 2a+3b)2?2( 2a+3b)(a?2b)+(?a+2b)2 = 4a2+12ab+9b2?2( 2a2+3ab?4ab?6b2)+a2?4ab+4b2 = 4a2+12ab+9b2? 4a2?6ab+8ab+12b2+a2?4ab+4b2 = a2+10ab+25b2
解2:( 2a+3b)2?2( 2a+3b)(a?2b)+(?a+2b)2 = ( 2a+3b)2?2( 2a+3b)(a?2b)+(a?2b)2
4
= [( 2a+3b)?(a?2b)]2 = (a+5b)2 = a2+10ab+25b2 2. 解:①20042 = (2000+4)2
= 20002+2?2000?4+42 = 4000000+16000+16 = 4016016 ②999.82 = (1000?0.2)2
= (1000)2?2×1000×0.2+(0.2)2 = 1000000?400+0.04 = 999600.04
③(2+1)(22+1)(24+1)(28+1)(216+1)+1 = (2?1)(2+1)(22+1)(24+1)(28+1)(216+1)+1 = (22?1)(22+1)(24+1)(28+1)(216+1)+1 = (24?1)(24+1)(28+1)(216+1)+1 = (28?1)(28+1)(216+1)+1 = (216?1)(216+1)+1 = 232?1+1 = 232.
5