而8:6化简后就是4:3。
(2)这两个比化简后都是4:3,比值相等,说明这两个比
可以写成一个等式。即
4:3 = 8:6或 = ,都读作:4比3 等于 8比6。
例4、(认识比例)下面哪几组中的两个比能组成比例,把组成的比例写下来。
(1) 5 :6 和15 :18 (2) 0.2 :0.1 和 3 :1
(3) : 和 1.2 :0.8 (4) 6 :2 和 :
分析与解:分别求出每组中两个比的比值,如果相等就能组成比例,不相等就不能组成比例。
(1) 因为5 :6 = ,15 :18 = ,所以5 :6 = 15 :18。
(2) 因为0.2 :0.1 = 2, 3 :1 = 3,所以 0.2 :0.1 和 3 :1不能组成比例。 (3) 因为 : = , 1.2 :0.8 = ,所以 : = 1.2 :0.8。 (4) 6 :2 = 3, : = 3,所以6 :2 = :。
点评:判断两个比能不能组成比例,可以像题目中的方法一样,求
出两个比的比值,比值相等就能组成比例,否则就不行。这样解题的依据是比例的意义。
例5、(比例的各部分名称和比例的基本性质)
一台织布机3小时织布3.6米,4小时织布4.8米。你能根据数量间的关系写出比例吗?
分析与解:(1)这台织布机织布米数和织布时间的比相等。 3.6 :3 = 4.8 :4
(2)这台织布机织布米数的比和织布时间的比相等。
3.6 :4.8 = 3 :4
(3)这台织布机织布时间和织布米数的比相等。 3 :
3.6 = 4 :4.8
介绍“项”:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。例如:
3.6 :3 = 4.8 :4 内项
外项 观察题中的三个比例,你有什么发现?
3.6 :3 = 4.8 :4 3.6 :4.8 = 3 :4 3 :3.6 = 4 :4.8
(1)3.6和4可以同时做比例的外项,也可以同时做比例的内项。 (2)3.6 × 4 = 3 × 4.8,可见在比例中两个外项的积等于两个内项的积。
(3)如果把3.6 :3 = 4.8 :4改写成分数形式
=
,等号两边的分
子、分母分别交叉相乘,结果也相等。
(4)如果用字母表示比例的四个项,即 a : b = c : d,
那么这个规律可表示成ad = bc 或 bc = ad。
(5)在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。
例6、(比例基本性质的应用)根据2 × 7 = 1.4 × 10这个等式写出几个比例。
分析与解:根据比例的基本性质,可以得出2和7、1.4和10这两组数
要么同时是比例的外项,要么同时是比例的内项。 1.4 : 2 = 7 : 10 1.4 : 7 = 2 : 10 10 : 2 = 7 : 1.4 10 : 7 = 2 : 1.4 2 : 1.4 = 10 : 7 2 : 10 = 1.4 : 7 7 : 1.4 = 10 : 2 7 : 10 = 1.4 : 2
点评:像这样的比例一共可以写8个。但它们不变的是2和7要么同
时为内项,要么同时为外项,而1.4和10这一组数也一样。写的时候可以一组一组地写了。
例7、(按比例放大的含义)
王叔叔在电脑上将下面的图片按比例放大,放大后的图片的长是12.5厘米,你有什么发现?
4厘米
5厘米
分析与解:按比例放大就是把原图形中的各部分线段都按相同的比
放大,放大前后的相关线段的厘米数是可以组成比例的。两张图片长的比与宽的比可以组成比例,两张图片中各
自长、宽的比也可以组成比例。 12.5 : 5 = 宽 : 4 或 12.5 : 宽 = 5 : 4
例8、(解比例)上图中宽是多少厘米?
分析与解:在解比例时,根据比例的基本性质把比例转化为积相等
的式子,然后再根据等式的性质来解答。 解:设宽是ⅹ厘米。 12.5 : 5 = ⅹ : 4
5ⅹ = 12.5 × 4 ┈┈ 根据比例的基本性质 5ⅹ = 50 ⅹ = 10
答:放大后图片的宽是10厘米。
点评:像上面这样求比例中的未知项,叫做解比例。 同学们,你会解答
= 这个比例吗?试试看吧!
小学数学总复习专题讲解及训练(六)
模拟试题
1、一张长方形图片,长12厘米,宽9厘米。按1 : 3的比缩小后,新图
片的长是( )厘米,宽是( )厘米,这张图片( )不变,大小( )。
2、一块正方形的花手帕,边长10厘米,将其按( )的比放大后,边长变为30厘米。
3、按2 : 1的比画出平行四边形放大后的图形,按1 : 3的比画出长方形缩小后的图形。
4、应用比例的意义,判断下面哪一组中的两个比可以组成比例? 6∶10和9∶15 20∶5和4∶1 5∶1和6∶2
5、在2∶5、12∶0.2、310∶15 三个比中,与5.6∶14 能组成比例的一个比是( )。
6、在比例里,两个( )的积和两个( )积相等。 7、如果A×3=B×5,那么A∶B= ( ) ∶ ( )。
8、从6、24、20、18与5这五个数中选出四个数组成一个比例是: ( ) ∶ ( ) = ( ) ∶ ( )。
9、根据3×8 = 4×6写成的比例是( )、( )或( )。 10、甲数的25% 等于乙数的75%,那么甲数与乙数的比是( )∶( )。
13、解比例
7194.5121
ⅹ∶3 = 8 ∶4 x = 0.8 6 ∶ 5 = 2 ∶x
331.3x 4 ∶ x = 3∶12 8 ∶ x = 5%∶0.6 18 = 3.6
14、在一个比例里,两个外项的积是30,已知一个内项是10,另一个内项是( )。
小学数学总复习专题讲解及训练(七)
主要内容
比例尺、面积变化、确定位置 学习目标
1、使学生在具体情境中理解比例尺的意义,能看懂线段比例尺。会
求一幅图的比例尺,能按给定的比例尺求相应的实际距离或图上距离,会把数值比例尺与线段比例尺进行转化。
2、使学生在经历“猜想-验证”的过程中,自主发现平面图形按比例放大后面积的变化规律。
3、在解决问题的过程中,进一步体会比例以及比例尺的应用价值,感知不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略。 4、使学生在具体情境中初步理解北偏东(西)、南偏东(西)的含
义,初步掌握用方向和距离确定物体位置的方法,能根据给定方向和距离在平面图上确定物体的位置或描述简单的行走路线。 5、使学生在用方向和距离确定物体位置的过程中,进一步培养观察
能力、识图能力和有条理的进行表达的能力。发展空间观念。 6、使学生积极参与观察、测量、画图、交流等活动,获得成功的体
验,体会数学知识与生活实际的联系,拓展知识视野,激发学习兴趣。
考点分析
1、图上距离和实际距离的比,叫做这幅图的比例尺。
2、比例尺 =
,比例尺有两种形式:数值比例尺和线段比例
尺。
3、把一个平面图形按照一定的倍数(n)放大或缩小到原来的几分之
一()后,放大(或缩小)后与放大(或缩小)前图形的面积比是n2:1(或1:n2)。
4、知道 了物体的方向和距离,就能确定物体的位置。
5、根据物体的位置,结合比例尺的相关知识,可以在平面图上画出物体的位置。画的时候先按方向画一条射线,在根据图上距离找出点所在的位置。
6、描述行走路线要依次逐段地说,每一段都应说出行走的方向与路程。
典型例题: