好文档 - 专业文书写作范文服务资料分享网站

人教版五年级下册数学第三单元知识点易错点汇总

天下 分享 时间: 加入收藏 我要投稿 点赞

(3)用棱长为2厘米的小正方体拼一个稍大一些的正方体至少需要( )个小正方体。 A、4个 B、8个 C、16个 D、27个

(4)下列有一些数量的棱长为1厘米的小正方体,哪些数量可以拼成较大的正方体。( ) A、27个 B、4个 C、1个 D、8个 E、32个 F、125个

(5)一个长方体的长宽高分别是18、12、9,如果用棱长为3的小正方拼一个这样的长方体,一共需要( )块这样的小正方体。

(6)用( )个棱长为4cm的小正方体可以拼出一个长为16cm,宽和高均为8cm的长方体。 (7)一个长方体的盒子里面长5分米,宽4分米,深3分米,放棱长为5厘米的正方体小木块共可以放( )块。

(8)两个棱长1厘米的正方体木块,拼成一个长方体,这具长方体表面积是( )平方厘米。

二、长方体和正方体的表面积

【知识点1】

长方体表面积=(长×宽+长×高+宽×高)×2 =(a×b+a×c+b×c)×2 =(前面面积+上面面积+右面面积)×2 正方体表面积=棱长×棱长×6=a×a×6=6a2 =任意一个面的面积×6

前面面积=后面面积;左面面积=右面面积;上面面积=下面面积 两个棱长和相等的长方体或一个长方体和一个正方体,表面积不一定相等!

表面积相等的两个长方体或一个长方体和一个正方体,棱长和也不一定相等!

@练习:

(1)一个正方体的棱长总和是48分米,它的棱长是( ),表面积是( )。

(2)一个长方体长6厘米,宽4厘米,高3厘米。这个长方体上下两个面的面积各是( )平方厘米,前后两个面的面积各是( )平方厘米,左右两个面的面积各是( )平方厘米,表面积是( )平方厘米。

(3)判断题:

长方体的表面积一定比正方体的表面积大。 ( )

如果一个长方体能锯成四个完全一样的正方体,那么长方体前面的面积是底面积的4倍.( ) (4)把一个棱长为6米的正方体分成两个大小、形状相同的长方体,每个长方体的表面积是( )㎡。

(5)长方体的长是6厘米,宽是4厘米,高是2厘米,它的棱长总和是 ( )厘米,六个面中最大的面积是( )平方厘米,表面积是( )平方厘米。

(6)用字母表示正方体(或长方体)的表面积=( );用字母表示长方体的体积公式是( )。 (7)下面哪些问题跟长方体表面积有关。 ( )

A:在一个长方体木箱外面刷油漆,刷油漆的面积一共有多少平方分米?

B:做一个长方体的金鱼缸需要多少玻璃?

C: 求一个长方形足球场需多少平方米的草皮?

(8)一个长方体的长是5分米,宽和高都是4分米,在这个长方体中,长度为4分米的棱有( )条,面积是20平方分米的面有( )个。

(9)一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是( )。

(10)一个正方体的底面积是64平方厘米,它的表面积是( )。 (11)一个正方体的底面周长是8厘米,它的表面积是( )。

(12)一个长方体侧面积是360平方厘米,高是9厘米,长是宽的1.5倍,求它的表面积。

【知识点2】长方体表面求法的变形:

① 贴商标类型:只求四周面积。

例如:一个长方体包装盒,长宽高分别为8,4,5,需要在包装盒四周贴上商标,需要商标纸的面积是多少?

② 游泳池类型:只求四周和底面。

例如:一座游泳池,长宽高分别为10m,4m,1.5m,需要在池内贴上边长为1dm的瓷砖,大约需要多少块瓷砖?

③ 抽纸盒类型:六个面面积减去缺口面积。

例如:一款抽纸盒,长宽高分别是20cm,12cm,5cm,上面有长14cm,宽3cm的抽纸口,做这款抽纸盒需要多少硬纸片?

④ 占地面积问题:只求底面面积。

例如:一个长方体蓄水池,长12m,宽8m,深3m,这个水池占地面积多少平方米? @练习:

(1)一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,如果商标纸的接头处是4厘米,这张商标纸的面积是多少平方厘米?

(2)一种长方体硬纸盒,长10厘米,宽6厘米,高5厘米,有2平方米的硬纸板210张,可以做这样的硬纸盒多少个?(不计接口)

(3)一个通风管的横截面是边长是0.5米的正方形,长2.5米.如果用铁皮做这样的通风管50只,需要多少平方米的铁皮?

(4)一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米。现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米?如果每平方米需要水泥4千克,一共要水泥多少千克?

(5)在一节长120厘米,宽和高都是10厘米的通风管,至少需要铁皮多少平方厘米?做12节这样的通风管呢?

(6)做一个正方体无盖纸盒,棱长是21厘米,至少需要多少平方厘米的纸板?

(7)一个抽屉,长50厘米,宽30厘米,高10厘米,做这样的2个抽屉,至少需要木板多少平方厘米?

(8)长方体的长为12厘米,高为8厘米,阴影部分的两个面的面积和是200平方厘米,这个长方体的表面积是多少平方厘米?

(9)一只鱼缸,棱长和为280cm,其中,底面周长为50cm,右面周长为40cm,前面周长为50cm,这只鱼缸的占地面积是多少平方厘米?

(10)一块长方形铁皮长60厘米,宽40厘米,如 图, 从四个角上剪去边长是10厘米的正方形,然后做成盒子,这个盒子的表面积是多少平方厘米?

(11)一个无盖正方体铁桶内外进行涂漆,涂漆的是( )个面.

【知识点3】棱长变化对表面积的影响:

?

正方体

正方体的棱长扩大2倍,其棱长和也扩大2倍,表面积扩大4倍,体积扩大8倍; 正方体的棱长扩大3倍,其棱长和也扩大3倍,表面积扩大9倍,体积扩大27倍; 正方体的棱长扩大n倍,其棱长和也扩大n倍,表面积扩大n2倍,体积扩大n3倍。

?

长方体

长方体的长宽高同时扩大2倍,其棱长和也扩大2倍,表面积扩大4倍,体积扩大8倍; 长方体的长宽高同时扩大3倍,其棱长和也扩大3倍,表面积扩大9倍,体积扩大27倍; 长方体的长宽高同时扩大n倍,其棱长和也扩大n倍,表面积扩大n2倍,体积扩大n3倍。 长方体的长扩大a倍,宽扩大b倍,高扩大c倍,棱长和变化无规律,表面积变化也无规律,体积扩大a×b×c倍。

长方体的长扩大a倍,宽扩大b倍,棱长和变化无规律,表面积变化无规律,体积扩大a×b倍 。

长方体的宽扩大b倍,高扩大c倍,棱长和变化无规律,表面积变化无规律,体积扩大b×c倍 。

长方体的长扩大a倍,高扩大c倍,棱长和变化无规律,表面积变化无规律,体积扩大a×c倍 。

@练习:

(1)大正方体的棱长是小正方体的棱长的2倍,那么大正方体的表面积是小正方体表面积的( )倍。 (2)正方体的棱长缩小5倍,它的体积就缩小( )倍. (3)一个长方体的长、宽、高都扩大4倍,它的表面积就( )。 (4)正方体的棱长扩大6倍,表面积扩大( )倍。

(5)一个正方体的棱长为4厘米扩大为2倍后,其棱长和为( )厘米,表面积为( )平方厘米比原来扩大了( )。

(6)一个长方体长扩大2倍,高扩大4倍,体积扩大( )倍。

(7)大正方体的表面积是小正方体的4倍,那么大正方体的棱长是小正方体的( );大正方体棱长之和是小正方体的( )

A.2倍 B.4倍 C.6倍 D.8倍

(8)把一个正方体切成大小相等的8个小正方体,8个小正方体的表面积之和( )。 A.等于大正方体的表面积 B.等于大正方体表面积的2倍 C.等于大正方体表面积的3倍 (9)判断:

一个长方体的长扩大2倍,宽扩大3倍,高扩大4倍,这个长方体的表面积扩大24倍。( ) 正方体的棱长扩大1.2倍,它的棱长也扩大1.2倍,它的表面积就扩大14.4倍。( ) 有棱长为1厘米的正方体拼成较大的正方体,其表面积比原来一个正方体时扩大了4倍。( ) 棱长为16厘米的正方体,将棱长缩小2倍后,其棱长为4厘米,其表面积也缩小了4倍。( )

【知识点4】

? 题)

?

长方体

沿与原来长方体最大面平行的方向切割,其表面积比原来增加的最多。 沿与原来长方体最小面平行的方向切割,其表面积比原来增加的最少。

而且每切一刀增加两个完全相同的面,切两刀增加四个完全相同的面,依次类推。

?

正方体

无论沿那个面平行的方向切,都将增加两个正方形的面,增加的面积均为2a2不存在增加最多最少的问题。

例如:两盒磁带有三种不同的包装方式,你说哪一种最省包装纸?

要求最省包装纸,即表面积最小,也就是表面积比原来单独包装时减少的表面积最多,根据规律应该选择第一种包装方式。

立体图形的切割:(切割会使表面积增加,因此存在表面积增加最多或最少的问

@练习:

(1)把一个棱长为6米的正方体分成两个大小、形状相同的长方体,每个长方体的表面积是( )㎡。

(2)用两个长4厘米、宽4厘米、高1厘米的长方体拼成一个大长方体,这个长方体的表面积最大是( )平方厘米,最小是( )平方厘米。

(3)把一根长80厘米,宽5厘米,高3厘米的长方体木料锯成长都是40厘米的两段,表面积比原来增加了( )平方厘米。

(4)用两个长、宽、高分别是3厘米,2厘米,1厘米的长方体拼成一个大长方体,这个大长方体的表面积最小是( )平方厘米。

(5)棱长是a的两个立方体拼成长方体,长方体的表面积比正方体的表面积和减少( )。 (6)一根长方体木料,长1.5米,宽和厚都是2分米,把它锯成4段,表面积最少增加( )平方分米.

(7)一个长5厘米,宽4厘米,高3厘米的长方体,截成两个形状,大小完全一样的长方体,表面积最多能增加多少平方厘米?

(8)把一根长2米的方木(底面是正方形)锯成三段,表面积增加5.76平方分米,原来这根方木的底面积是多少平方分米?

(9)一根1.8m长的木材,锯成三个完全相同的正方体后,表面积比原来增加多少平方厘米?

(10)一个长方体长为1.5分米,宽为0.5分米,高位1分米,锯三刀之后之后可以锯成6个完全相同的正方体,每个正方体的表面积是多少?这时表面积之和比原来增加多少?

(11)把一个长18厘米,宽12厘米,高6厘米的长方体木块截成两个表面积相等的长方体,表面积最小的长方体的表面积是多少?表面积最大的长方体的表面积是多少?

? 从一个长方体中切出一个最大的正方体问题

应该以长方体中最短的棱作为切出正方体的棱长,这样的正方体将是能切出的最大正方体,否则切出的将不是正方体。

例如:在一个长是4厘米,宽为3厘米,高为2厘米的长方体中切出一个最大的正方体,该正方体的棱长和是多少?剩余部分的表面积是多少?

分析:以最短的棱为正方体的棱长,即以高为2cm

的棱为正方体的棱长,那么正方体的棱长和为:2×12=24cm。

切去正方体后所剩部分的长为4-2=2cm,宽为3-2=1cm,高仍为2cm,因此所剩部分表面积为:(2×1+2×2+1×2)×2=16cm2。

人教版五年级下册数学第三单元知识点易错点汇总

(3)用棱长为2厘米的小正方体拼一个稍大一些的正方体至少需要()个小正方体。A、4个B、8个C、16个D、27个(4)下列有一些数量的棱长为1厘米的小正方体,哪些数量可以拼成较大的正方体。()A、27个B、4个C、1个D、8个E、32个F、125个
推荐度:
点击下载文档文档为doc格式
1uxbs0v7sl41z4g1sgcd5uqa87r003016qz
领取福利

微信扫码领取福利

微信扫码分享