好文档 - 专业文书写作范文服务资料分享网站

数字信号处理_吴镇扬_第二版_第三章习题答案

天下 分享 时间: 加入收藏 我要投稿 点赞

3.3 x%1(n) = x(n + 8r) 说明x%1(n)的周期是8 ∑

r=?∞

= e ∴X% 1(k) = x%1(n)WNkn = e ∑ ∑ ∑

N?1 7

? j kn

8

7

? jπ kn 4

X1(0)X1(1)X1(2)X1(4)X1(6)n=0

n=0

n=0

? jπ 0×n

∑7

e 4

= 3

n=0

∑7

? jπ n

e 4

= (1+ 2 / 2) (1? j) n=0

7

2n

? jπe 4

= ? j;X1(3) = ∑7

? jπ 3n

e 4

= (1? 2 / 2) (1+ j)n=0

n=0 ? jπ 4n

∑7

e 4

=1;X1(5) = ∑7

? jπ 5n

e 4

=(1? 2 / 2) (1? j) n=0 n=0 7

jπ 6n

7

?e 4

= j;X1(7) = ∑? jπ 7n

e 4

= (1+ 2 / 2) (1+ j)

n=0

n=0

= = =

= = 解:(1)x(n) =δ(n)

N?1

N?1

根据定义有:X(k) =∑ x (n)W kn

N

= ∑ δ(n)WNkn n=0

n=0

(2)x(n) =δ(n ?n0),0 < n0 < N

X (k) = ∑N?1

x ( n)W kn = ∑N?1

N

δ (n? n0)WN kn =WN kn

0 n=0

n=0

(3)x(n) = an

0 < n < N ?1

X (k) = ∑N ? 1

x(n)W1?(aWN k )N 1?aN

N kn = n=0

1?(aWN k ) = 1?aWN k

=1 0< n0 <

3.6 N

(4)x(n) = nRN (n)

1? zN?1

令x = ∑ z?N

1(n) = RN(n),则X1(z)?n = n=0

1? z?1

根据线性加权性质可得:

X(z) = ?z dX1(z) = ? Nz?N(1? z?1) ? z?1(1? z?N)

dz (1? z?1)2 ∴ X (k) = X (z) N

z=WN

?k = ? 1?Wk ≠ 0

N k

X(k) = N ? nW1

N ?1

Nkn = n =1+ 2 +3+L+ (N ?1) = N(N ?k=0

∑ ∑ 1)

n=0 n=0

2 .9 图略

f (n) = x(n)*y(n) = {

1,2,3,4,5,3,1,?1,?3,?5,?4,?3,?2,?1 f10(n) = x(n)? y(n) = { ?3,?1,1,3,5,3,1,?1,?3,?5 }

3}

数字信号处理_吴镇扬_第二版_第三章习题答案

3.3x%1(n)=x(n+8r)说明x%1(n)的周期是8∑r=?∞∞=e∴X%1(k)=x%1(n)WNkn=e∑∑∑N?172π?jkn8<
推荐度:
点击下载文档文档为doc格式
1us4o9r0oq3fmdz9vdat
领取福利

微信扫码领取福利

微信扫码分享