电动力学习题解答
电动力学答案
第一章 电磁现象的普遍规律
1. 根据算符?的微分性与向量性,推导下列公式:
?(A?B)?B?(??A)?(B??)A?A?(??B)?(A??)B
2 A?(??A)?12?A?(A??)A解:(1)?(A?B)??(A?Bc)??(B?Ac)
?Bc?(??A)?(Bc??)A?Ac?(??B)?(Ac??)B
?B?(??A)?(B??)A?A?(??B)?(A??)B
(2)在(1)中令A?B得:
?(A?A)?2A?(??A)?2(A??)A,
所以 A?(??A)?1 2?(A?A)?(A??)A2即 A?(??A)?1 2?A?(A??)A2. 设u是空间坐标x,y,z的函数,证明:
?f(u)?证明:
dfdAdA?u , ??A(u)??u?, ??A(u)??u? dududu(1)?f(u)??f(u)?f(u)?f(u)df?udf?udf?uex?ey?ez?ex?ey?ez ?x?y?zdu?xdu?ydu?zdf?u?u?udf?(ex?ey?ez)??u du?x?y?zdu?Ax(u)?Ay(u)?Az(u)dAx?udAy?udAz?u(2)??A(u)? ??????x?y?zdu?xdu?ydu?zdAydAdA?u?u?udA ?(xex?ey?zez)?(ex?ey?ez)??u?dududu?x?y?zdu(3)?u?dA??u/?x?u/?y?u/?z dudAx/dudAy/dudAz/du
exeyezdAy?udAx?udA?udAz?udAz?udAy?u?)ex?(x?)ey?(?)ezdu?ydu?zdu?zdu?xdu?xdu?y?Ay(u)?Ax(u)?A(u)?Az(u)?A(u)?Ay(u)?[z?]ex?[x?]ey?[?]ez
?y?z?z?x?x?y???A(u) ?(3. 设r?(x?x')2?(y?y')2?(z?z')2为源点x'到场点x的距离,r的方向规定为
第 1 页
电动力学习题解答
从源点指向场点。
(1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系:
?r???'r?r/r ; ?(1/r)???'(1/r)??r/r3 ; ??(r/r3)?0;
??(r/r3)???'?(r/r3)?0 , (r?0)。
(2)求??r ,??r ,(a??)r ,?(a?r) ,??[E0sin(k?r)]及
??[E0sin(k?r)] ,其中a、k及E0均为常向量。
(1)证明:r?(x?x')2?(y?y')2?(z?z')2
1 ?r?(1/r)[(x?x')ex?(y?y')ey?(z?z')ez]?r/r ○
?'r?(1/r)[?(x?x')ex?(y?y')ey?(z?z')ez]??r/r
可见 ?r???'r
1r?1?d?1?2 ???r???r??????○rdrr23rr????1r?1?d?1??'??????'r??2?'r?3
rr?r?dr?r?可见 ??1/r????'?1/r?
33333 ??(r/r)???[(1/r)r]??(1/r)?r?(1/r)??r ○
d?1?3r?3??r?r?0??4?r?0 dr?r?rr13334 ??(r/r)???[(1/r)r]??(1/r)?r?3??r ○r3r3??4?r?3?0 , (r?0)
rrr?(2)解:
???ex?ey?ez)?[(x?x')ex?(y?y')ey?(z?z')ez]?3 ?x?y?zexeyez2 ??r??/?x?/?y?/?z?0 ○
x?x'y?y'z?z'1??r?(○
?ay?az)[(x?x')ex?(y?y')ey?(z?z')ez] 3 (a??)r?(ax○?x?y?z????axex?ayey?azez?a
4 ?(a?r)?r?(??a)?(r??)a?a?(??r)?(a??)r ○
因为,a为常向量,所以,??a?0, (r??)a?0, 又???r?0,??(a?r)?(a??)r?a
5 ??[E0sin(k?r)]?(??E0)sin(k?r)?E0?[?sin(k?r)] ○
E0为常向量,??E0?0,而?sin(k?r)?cos(k?r)?(k?r)?cos(k?r)k,
第 2 页
电动力学习题解答
所以 ??[E0sin(k?r)]?k?E0cos(k?r)
6 ??[E0sin(k?r)]?[?sin(k?r)]?E0?k?E0cos(k?r)] ○
4. 应用高斯定理证明
?dV??f??dS?fVS,应用斯托克斯(Stokes)定理证明
?dS?????dl?
SL证明:(I)设c为任意非零常矢量,则
c??dV??f??dV[c?(??f)]
VV根据矢量分析公式 ??(A?B)?(??A)?B?A?(??B), 令其中A?f,B?c,便得
??(f?c)?(??f)?c?f?(??c)?(??f)?c
所以 c?dV??f?dV[c?(??f)]?dV??(f?c)?(f?c)?dS
VVV??????c?(dS?f)?c??dS?f
因为c是任意非零常向量,所以
V?dV??f??dS?f
(II)设a为任意非零常向量,令F??a,代入斯托克斯公式,得
???F?dS??F?dl (1) (1)式左边为:???(?a)?dS??[???a????a]dS
?????a?dS???a????dS ???a????dS??a?dS???
?a??dS??? (2)
(1)式右边为:??a?dl?a???dl (3) 所以 a??dS????a???dl (4)
SSSSSSSSS因为a为任意非零常向量,所以
?dS??????dl
S5. 已知一个电荷系统的偶极矩定义为 p(t)??V?(x',t)x'dV',利用电荷守恒定律
??J???dp?0证明p的变化率为:?J(x',t)dV ?tdt?V证明:方法(I)
??(x',t)dpd????(x',t)x'dV'??[?(x',t)x']dV'??x'dV'???(?'?J)x'dV'
VVVVdtdt?t?tdp?e1???(?'?J)x1'?e1dV'???x1'(?'?J)dV'??[??'?(x1'J)?(?'x1')?J]dV'
VVVdt第 3 页