欢迎阅读
物理重要知识点总结
学好物理要记住:最基本的知识、方法才是最重要的。 学好物理重在理解(概念、规律的确切含义,能用不同的形式进行表达,理解其适用条件) ........
(最基础的概念,公式,定理,定律最重要);每一题中要弄清楚(对象、条件、状态、过程)是解题关健 对联: 概念、公式、定理、定律。 (学习物理必备基础知识) 对象、条件、状态、过程。(解答物理题必须明确的内容) 力学问题中的“过程”、“状态”的分析和建立及应用物理模型在物理学习中是至关重要的。 说明:凡矢量式中用“+”号都为合成符号,把矢量运算转化为代数运算的前提是先规定正方向。 在学习物理概念和规律时不能只记结论,还须弄清其中的道理,知道物理概念和规律的由来。 Ⅰ。力的种类:(13个性质力) 这些性质力是受力分析不可少的“是受力分析的基础” 力的种类:(13个性质力) 有18条定律、2条定理 1重力: G = mg (g随高度、纬度、不同星球上不同) 2弹力:F= Kx 3滑动摩擦力:F滑= ?N 4静摩擦力: O? f静? fm (由运动趋势和平衡方程去判断) 5浮力: F浮= ?gV排 6压力: F= PS = ?ghs 7万有引力: F引=GA B 1万有引力定律B 2胡克定律B 3滑动摩擦定律B 4牛顿第一定律B 5牛顿第二定律B 力学 6牛顿第三定律B 7动量守恒定律B 8机械能守恒定律B 9能的转化守恒定律. 10电荷守恒定律 11真空中的库仑定律 (真空中、点电荷) 12欧姆定律 13电阻定律B 电学 14闭合电路的欧姆定律B 15法拉第电磁感应定律 16楞次定律B 17反射定律 18折射定律B 定理: ①动量定理B ②动能定理B做功跟动能改变的关系 m1m2r2q1q28库仑力: F=Kr29电场力: F电=q E =qu d10安培力:磁场对电流的作用力 F= BIL (B?I) 方向:左手定则 11洛仑兹力:磁场对运动电荷的作用力 f=BqV (B?V) 方向:左手定则 12分子力:分子间的引力和斥力同时存在,都随距离的增大而减小,随距离的减小而增大,但斥力变化得快。 .13核力:只有相邻的核子之间才有核力,是一种短程强力。 5种基本运动模型 1静止或作匀速直线运动(平衡态问题); 2匀变速直、曲线运动(以下均为非平衡态问题); 3类平抛运动; 4匀速圆周运动; 5振动。 欢迎阅读
欢迎阅读
受力分析入手(即力的大小、方向、力的性质与特征,力的变化及做功情况等)。 再分析运动过程(即运动状态及形式,动量变化及能量变化等)。 最后分析做功过程及能量的转化过程;
然后选择适当的力学基本规律进行定性或定量的讨论。
强调:用能量的观点、整体的方法(对象整体,过程整体)、等效的方法(如等效重力)等解决 Ⅱ运动分类:(各种运动产生的力学和运动学条件及运动规律)是高中物理的重点、难点
.............
高考中常出现多种运动形式的组合 追及(直线和圆)和碰撞、平抛、竖直上抛、匀速圆周运动等 ①匀速直线运动 F合=0 a=0 V0≠0 ②匀变速直线运动:初速为零或初速不为零,
③匀变速直、曲线运动(决于F合与V0的方向关系) 但 F合= 恒力
④只受重力作用下的几种运动:自由落体,竖直下抛,竖直上抛,平抛,斜抛等
⑤圆周运动:竖直平面内的圆周运动(最低点和最高点);匀速圆周运动(关键搞清楚是什么力提供作向心力) ⑥简谐运动;单摆运动; ⑦波动及共振; ⑧分子热运动;(与宏观的机械运动区别) ⑨类平抛运动; ⑩带电粒在电场力作用下的运动情况;带电粒子在f洛作用下的匀速圆周运动 Ⅲ。物理解题的依据: (1)力或定义的公式 (2) 各物理量的定义、公式 (3)各种运动规律的公式 (4)物理中的定理、定律及数学函数关系或几何关系 Ⅳ几类物理基础知识要点: ①凡是性质力要知:施力物体和受力物体; ②对于位移、速度、加速度、动量、动能要知参照物; ③状态量要搞清那一个时刻(或那个位置)的物理量; ④过程量要搞清那段时间或那个位侈或那个过程发生的;(如冲量、功等) ⑤加速度a的正负含义:①不表示加减速;② a的正负只表示与人为规定正方向比较的结果。 ⑥如何判断物体作直、曲线运动; ⑦如何判断加减速运动; ⑧如何判断超重、失重现象。 ⑨如何判断分子力随分子距离的变化规律 ⑩根据电荷的正负、电场线的顺逆(可判断电势的高低)?电荷的受力方向;再跟据移动方向?其做功情况?电势能的变化情况 V。知识分类举要 1.力的合成与分解、物体的平衡 ?求F1、F2两个共点力的合力的公式: F2 F F=F1?F2?2F1F2COS? 22 合力的方向与F1成?角:
tg?=
F2sin?F1?F2cos?α θ F1
注意:(1) 力的合成和分解都均遵从平行四边行定则。
(2) 两个力的合力范围: ? F1-F2 ? ? F?? F1 +F2 ? (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。
共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力为零。
?F=0 或?Fx=0 ?Fy=0
欢迎阅读
欢迎阅读
推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。按比例可平移为一个封闭的矢量三角形 [2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力(一个力)的合力一定等值反向 三力平衡:F3=F1 +F2 摩擦力的公式:
(1 ) 滑动摩擦力: f= ?N
说明 :a、N为接触面间的弹力,可以大于G;也可以等于G;也可以小于G
b、?为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N无关.
(2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关.
大小范围:
O? f静? fm (fm为最大静摩擦力与正压力有关)
说明:a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角。 b、摩擦力可以作正功,也可以作负功,还可以不作功。 c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d、静止的物体可以受滑动摩擦力的作用,运动的物体也可以受静摩擦力的作用。 力的独立作用和运动的独立性 当物体受到几个力的作用时,每个力各自独立地使物体产生一个加速度,就象其它力不存在一样,这个性质叫做力的独立作用原理。 一个物体同时参与两个或两个以上的运动时,其中任何一个运动不因其它运动的存在而受影响,这叫运动的独立性原理。物体所做的合运动等于这些相互独立的分运动的叠加。 根据力的独立作用原理和运动的独立性原理,可以分解速度和加速度,在各个方向上建立牛顿第二定律的分量式,常常能解决一些较复杂的问题。 VI.几种典型的运动模型:追及和碰撞、平抛、竖直上抛、匀速圆周运动等及类似的运动 2.匀变速直线运动: 12两个基本公式(规律): Vt = V0 + a t S = vo t +a t 及几个重要推论: 22 2 (1) 推论:Vt-V0= 2as (匀加速直线运动:a为正值 匀减速直线运动:a为正值) V0?Vts(2) A B段中间时刻的即时速度: Vt/ 2 == (若为匀变速运动)等于这段的平均速度 2t (3) AB段位移中点的即时速度: Vs/2 = vo?vt222 Vt/ 2 =V=22V0?VtsSN?1?SN=== VN ? Vs/2 = 2t2Tvo?vt 2匀速:Vt/2 =Vs/2 ; 匀加速或匀减速直线运动:Vt/2 欢迎阅读 ⑤通过连续相等位移末速度比为1:2:3……n (6)匀减速直线运动至停可等效认为反方向初速为零的匀加速直线运动.(先考虑减速至停的时间).“刹车陷井” 实验规律: (7) 通过打点计时器在纸带上打点(或频闪照像法记录在底片上)来研究物体的运动规律:此方法称留迹法。 初速无论是否为零,只要是匀变速直线运动的质点,就具有下面两个很重要的特点: 在连续相邻相等时间间隔内的位移之差为一常数;?s = aT2(判断物体是否作匀变速运动的依据)。 中时刻的即时速度等于这段的平均速度 (运用V⑴是判断物体是否作匀变速直线运动的方法。?s = aT⑵求的方法 VN=V=2 可快速求位移) v?vtssn?1?snsSN?1?SN= vt/2?v平?0??t2T2t2T2⑶求a方法: ① ?s = aT ②SN?3一SN=3 aT2 ③ Sm一Sn=( m-n) aT2 ④画出图线根据各计数点的速度,图线的斜率等于a; 识图方法:一轴、二线、三斜率、四面积、五截距、六交点 探究匀变速直线运动实验: 下图为打点计时器打下的纸带。选点迹清楚的一条,舍掉开始比较密集的点迹,从便于测量的地方取一个开始点O,然后每5个点取一个计数点A、B、C、D …。(或相邻两计数点间 有四个点未画出)测出相邻计数点间的距离s1、s2、s3 … v/(ms-1) s1 s2 s3 利用打下的纸带可以: C D ⑴求任一计数点对应的即时A B 速度v:如记数周期:T=5×0.02s=0.1s) T0 T 2T 3T 4T 5T 6T t/s vc?s2?s3(其中2T⑵利用上图中任意相邻的两段位移求a:如a?s3?2s2 ⑶利用“逐差法”求a:a??s4?s5?s6??2?s1?s2?s3? 9T⑷利用v-t图象求a:求出A、B、C、D、E、F各点的即时速度,画出如图的v-t图线,图线的斜率就是加速度a。 注意: 点 a. 打点计时器打的点还是人为选取的计数点 距离 b. 纸带的记录方式,相邻记数间的距离还是各点距第一个记数点的距离。 纸带上选定的各点分别对应的米尺上的刻度值, 周期 c. 时间间隔与选计数点的方式有关 (50Hz,打点周期0.02s,常以打点的5个间隔作为一个记时单位)即区分打点周期和记数周期。 d. 注意单位。一般为cm 试通过计算推导出的刹车距离s的表达式:说明公路旁书写“严禁超载、超速及酒后驾车”以及“雨天路滑车辆减速行驶”的原理。 解:(1)、设在反应时间内,汽车匀速行驶的位移大小为s1;刹车后汽车做匀减速直线运动的位移大小为s2,加速度大小为a。由牛顿第二定律及运动学公式有: 2v0由以上四式可得出:s?vt? ..........?5?002(F??g)m欢迎阅读 欢迎阅读 ①超载(即m增大),车的惯性大,由?5?式,在其他物理量不变的情况下刹车距离就会增长,遇紧急情况不能及时刹车、停车,危险性就会增加; ②同理超速(v0增大)、酒后驾车(t0变长)也会使刹车距离就越长,容易发生事故; ③雨天道路较滑,动摩擦因数?将减小,由<五>式,在其他物理量不变的情况下刹车距离就越长,汽车较难停下来。 因此为了提醒司机朋友在公路上行车安全,在公路旁设置“严禁超载、超速及酒后驾车”以及“雨天路滑车辆减速行驶”的警示牌是非常有必要的。 思维方法篇 1.平均速度的求解及其方法应用 一V0?Vt?s① 用定义式:v? 普遍适用于各种运动;② v=只适用于加速度恒定的匀变速直线运动 2?t2.巧选参考系求解运动学问题 3.追及和相遇或避免碰撞的问题的求解方法: 两个关系和一个条件:1两个关系:时间关系和位移关系;2一个条件:两者速度相等,往往是物体间能否追上,或两者距离最大、最小的临界条件,是分析判断的切入点。 关键:在于掌握两个物体的位置坐标及相对速度的特殊关系。 基本思路:分别对两个物体研究,画出运动过程示意图,列出方程,找出时间、速度、位移的关系。解出结果,必要时进行讨论。 追及条件:追者和被追者v相等是能否追上、两者间的距离有极值、能否避免碰撞的临界条件。 讨论: 1.匀减速运动物体追匀速直线运动物体。 ①两者v相等时,S追 VVoV(1)上升最大高度:H = (2)上升的时间:t= o (3)从抛出到落回原位置的时间:t =2og2gg(4)上升、下落经过同一位置时的加速度相同,而速度等值反向 (5)上升、下落经过同一段位移的时间相等。 (6)匀变速运动适用全过程S = Vo t - 2 12 g t ; Vt = Vo-g t ; Vt2-Vo2 = -2gS (S、Vt的正、负号的理解) 24.匀速圆周运动 欢迎阅读 V被追则还有一次被追上的机会,其间速度相等时,两者距离有一个极大值 2.初速为零匀加速直线运动物体追同向匀速直线运动物体 ①两者速度相等时有最大的间距 ②位移相等时即被追上 3.匀速圆周运动物体:同向转动:?AtA=?BtB+n2π;反向转动:?AtA+?BtB=2π 4.利用运动的对称性解题 5.逆向思维法解题 6.应用运动学图象解题 7.用比例法解题 8.巧用匀变速直线运动的推论解题 ①某段时间内的平均速度 = 这段时间中时刻的即时速度 ②连续相等时间间隔内的位移差为一个恒量 ③位移=平均速度?时间 解题常规方法:公式法(包括数学推导)、图象法、比例法、极值法、逆向转变法 3.竖直上抛运动:(速度和时间的对称) 分过程:上升过程匀减速直线运动,下落过程初速为0的匀加速直线运动. 全过程:是初速度为V0加速度为?g的匀减速直线运动。