(4)G(s)?
s(s?0.1)
s(s2?s?1)(s2?4s?25)
5-4解:(a)G(s)?
KTs?1由一个放大环节、一个惯性环节组成20lgK?20,K?10;?1?∴G(s)?
(b)G(s)?
100.1s?11
?10?T?0.1TK
由一个放大环节、一个积分环节、一个惯性环节组成s(Ts?1)c
11
?80?T?,穿越频率?c?40,L(?)c?20lgK?20lg?T80∴K?40
40
∴G(s)?
1s(s?1)80?1?
?0,(c)G(s)?
1?s(2s2?2s?1)?n?n
K
由一个放大环节、一个积分环节、一个振荡环节组成L(?k)?20lgK?20lg?k?0,K??k?100,由图可知?r?45.3,2020lg
12?1??2?4.85,?n?
?r1?2?2,得到?n≈50,??0.3(0.954舍去)。2.5?103?100∴G(s)?2s(s?30s?2.5?103)(d)G(s)?组成K(?s?
由一个放大环节、一个微分环节、两个积分环节、两个惯性环节221)s(Ts?1)?1?0.1得??10;?2?1得T?1
L(?c)?20lgK?20lg10?20lg(?2c?1)?0,∴K?0.2,∴G(s)?
0.2(10s?1)
s2(s?1)2(或者采用精确表示:L(?c)?20lgK?20lg102?1?20lg12?20lg(1?1)?0,K?
20.1990(10s?
≈0.1990,∴G(s)?2s(s?1)21011)
)(e)G(s)?
K(?s?
11)?s(2s2?2s?1)?n?n
1
?8???0.2,在?1?1处,2??1?1???1,?2?2??n?2,20lgL?20lgK?20,∴K?10
∴G(s)?
5-5解:(1)G(s)?
10(s?1)
s(0.25s2?0.2s?1)
2505
?,20lgK?14
s2(s?50)s2(1s?1)
50伯德图:21有一次负穿越,P?0,Z?P?2N?2故不稳定(2)G(s)?
250
,20lgK?10.46?
11s(s?5)(s?15)s(s?1)(s?1)51510
3P?0,N?0无穿越,故Z?P?2N?0稳定2210
(s?1)
250(s?1)3(3)G(s)?2?,20lgK?10.46
11s(s?5)(s?15)s2(s?1)(s?1)515P?0,N?0无穿越,故Z?P?2N?0稳定5-6解:G(s)?
10
,?1?2,?2?50,20lgK?20
s(0.5s?1)(0.02s?1)2320lgK?20lg?c?20lg(0.5?c)?0,得?c≈4.2460);20?25≈4.47(精确解D?(90D?arctg(0.5?g)?arctg(0.02?g))??180
得0.5?gi0.02?g?1??g?
1
?100.01D??180?arctg(0.5?c)?arctg(0.02?c)?90D?180D?66D?5D?90D?19DLh??20lgG(j?g)??20lg
5-7解:G(s)?
10
≈20lg5?13.98
10(5j?1)(0.2j?1)dB
K
s(0.01s2?0.01s?1)
?n?10,??0.05
?g2??n求?g,?90D?arctan
????1???ng??
Lh??20lgG(j?g)?20
2??180D,得?g?10
24