555定时器的典型应用电路
单稳态触发器
555定时器构成单稳态触发器如图22-2-1所示,该电路的触发信号在2脚输入,R和C是外接定时电路。单稳态电路的工作波形如图22-2-2所示。
在未加入触发信号时,因ui=H,所以uo=L。当加入触发信号时,ui=L,所以uo=H,7脚内部的放电管关断,电源经电阻R向电容C充电,uC按指数规律上升。当uC上升到2VCC/3时,相当输入是高电平,555定时器的输出uo=L。同时7脚内部的放电管饱和导通是时,电阻很小,电容C经放电管迅速放电。从加入触发信号开始,到电容上的电压充到2VCC/3为止,单稳态触发器完成了一个工作周期。输出脉冲高电平的宽度称为暂稳态时间,用tW表示。
图22-2-1 单稳态触发器电路图
图22-2-2 单稳态触发器的波形图
暂稳态时间的求取:
暂稳态时间的求取可以通过过渡过程公式,根据图22-2-2可以用电容器C上的电压曲线确定三要素,初始值为uc(0)=0V,无穷大值uc(∞)=VCC,τ=RC,设暂稳态的时间为tw,当t= tw时,uc(tw)=2 VCC/3时。代入过渡过程公式[1-p205]
几点需要注意的问题:
这里有三点需要注意,一是触发输入信号的逻辑电平,在无触发时是高电平,必须大于2 VCC/3,低电平必须小于 VCC/3,否则触发无效。
二是触发信号的低电平宽度要窄,其低电平的宽度应小于单稳暂稳的时间。否则当暂稳时间结束时,触发信号依然存在,输出与输入反相。此时单稳态触发器成为一个反相器。
R的取值不能太小,若R太小,当放电管导通时,灌入放电管的电流太大,会损坏放电管。图22-2-3是555定时器 单稳态触发器的示波器波形图,从图中可以看出触发脉冲的低电平和高电平的位置,波形图右侧的一个小箭头为0电位。
图22-2-3 555定时器单稳态触发器的示波器波形图 [动画4-5]
多谐振荡器
555定时器构成多谐振荡器的电路如图22-2-4所示,其工作波形如图22-2-5所示。
与单稳态触发器比较,它是利用电容器的充放电来代替外加触发信号,所以,电容器上的电压信号应该在两个阈值之间按指数规律转换。充电回路是RA、RB和C,此时相当输入是低电平,输出是高电平;当电容器充电达到2 VCC/3时,即输入达到高电平时,电路的状态发生翻转,输出为低电平,电容器开始放电。当电容器放电达到2VCC/3时,电路的状态又开始翻转。如此不断循环。电容器之所以能够放电,是由于有放电端7脚的作用,因7脚的状态与输出端一致,7脚为低电平电容器即放电。
图22-2-4 多谐振荡器电路图 图22-2-5 多谐振荡器的波形
震荡周期的确定:
根据uc(t)的波形图可以确定振荡周期,T=T1+T2
先求T1,T1对应充电,时间常数τ1=(RA+RB)C,初始值为uc(0)= VCC/3,无穷大值uc(∞)=VCC,当t= T
1时,uc(T1)=2
VCC/3,代入过渡过程公式,可得
T1=ln2(RA+RB)C≈0.7(RA+RB)C
求T2,T2对应放电,时间常数τ2=RBC,初始值为uc(0)=2 VCC/3,无穷大值uc(∞) =0V,当t= T2时,uc(T
2)=
VCC/3,代入过渡过程公式,可得T2=ln2RBC≈0.7RBC
振荡周期
T= T1+T2=≈0.693(RA+2RB)C
振荡频率
占空比
图22-2-6是555定时器多谐振荡器的示波器波形图,多谐振荡器的供电电压为5V。图中上面的波形是输出波形,幅度382.5mV,示波器探头有10倍衰减,实际幅度是3.8V;下面的一个是定时电容器上的波形,图中显示充放电波形的峰峰值是1.625V,波谷距零线的距离大约也是1.6~1.7V,正好是555定时器的二个阈值的数值。
图22-2-6 555定时器多谐振荡器的示波器波形图[动画4-6]
占空比可调的多谐振荡器:
对于图22-2-4所示的多谐振荡器,因T1>T2,它的占空比大于50%,要想使占空比可调,应如何办?当然应该从能调节充、放电通路上想办法。图22-2-7是一种占空比可调的电路方案,该电路因加入了二极管,使电容器的充电和放电回路不同,可以调节电位器使充、放电时间常数相同。如果调节电位器使RA=RB,可以获得50%的占空比。读者不难看懂该电路的充、放电通路以及充、放电时间常数的大小。
图22-2-7 占空比可调的多谐振荡器
密特触发器
555定时器构成施密特触发器的电路图如图22-2-8所示,波形图如图22-2-9所示。施密特触发器的工作原理和多谐振荡器基本一致,无原则不同。只不过多谐振荡器是靠电容器的充放电去控制电路状态的翻转,而施密特触发器是靠外加电压信号去控制电路状态的翻转。所以,在施密特触发器中,外加信号的高电平必须大于2 VCC/3,低电平必须小于VCC/3,否则电路不能翻转。
图22-2-8 施密特触发器电路图 图22-2-9 施密特触发器的波形图
由于施密特触发器采用外加信号,所以放电端7脚就空闲了出来。利用7脚加上上拉电阻,就可以获得一个与输出端3脚一样的输出波形。如果上拉电阻接的电源电压不同,7脚输出的高电平与3脚输出的高电平在数值上会有所不同。
施密特触发器的主要用于对输入波形的整形。图22-2-10表示的是将三角波整形为方波,其它形状的输入波形也可以整形为方波。图3.42是施密特触发器的示波器波形图,从图中可以看出对应输出波形翻转的555定时器的二个阈值,一个是对应输出下降沿的3.375 V,另一个是对应输出上升沿的1.688V,施密特触发器的回差电压是3.375-1.688=1.688V。从图示波形可以看出,与理论值一致(电源电压5V)。在放电端7脚加一个上拉电阻,接10V电源,可以获得一个高、低电平与3脚输出不同,但波形的高、低电平宽度完全一样的第二个输出波形,这个波形可以用于不同逻辑电平的转换。当输入信号的幅度太小时,施密特触发器将不能工作。
图22-2-10 施密特触发器的示波器波形图
压控振荡器
一般的振荡器改变振荡频率,是通过改变谐振回路或选频网络的参数实现的。压控振荡器是通过改变一个控制电压来实现对振荡器频率的改变,因此压控振荡器特别适合用于控制电路之中。利用555定时器的5脚,可以方便实现这一功能。由于555定时器是一种低价格通用型的电路,其压控非线性较大,性能较差,只能满足一般技术水平的需要。如果需要高的性能指标,可采用专用的压控振荡器芯片,如AD650等。AD650将在第10章中介绍。555定时器构成的压控振荡器如图22-2-11所示,波形图如图22-2-12所示。
555定时器做压控振荡器,其工作原理与多谐振荡器无本质不同。在压控振荡器中,实质上是通过5脚加入一个控制电压u5,u5的加入使555定时器的阈值随之改变(参阅图22-2-12),从而可以改变多谐振荡器的振荡频率。为了使u5的控制作用明显,u5应是一个低阻的信号源。因为555定时器内部的阈值是由三个5kW的电阻分压取得,u5的内阻大或串入较大的电阻,压控作用均不明显。
图22-2-11 压控振荡器电路图 图22-2-12 压控振荡器的波形图
555时基电路构成的脉宽调制电路
作者: 来源: 1730次