归纳—猜想~~~找规律
给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题.
一、数字排列规律题 1、观察下列各算式:
1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方… 按此规律
(1)试猜想:1+3+5+7+…+2005+2007的值?
(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?
2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __ 3、请填出下面横线上的数字。 1 1 2 3 5 8 ____ 21
4、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?
5、有一串数字 3 6 10 15 21 ___ 第6个是什么数?
6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个
数是( ).
A.1 B.2 C.3 D.4 7、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个. 二、几何图形变化规律题
1、观察下列球的排列规律(其中●是实心球,○是空心球):
●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●…… 从第1个球起到第2004个球止,共有实心球 个.
2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称).
三、数、式计算规律题 1、已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62;
④ 13+23+33+43=102 ;
由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9,
1+2+3+4+3+2+1=16,
1+2+3+4+5+4+3+2+1=25,…
根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.
3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n?是正整数.现在我们来研究一个类似的问题:1×2+2×3+…n?n?1?= ? 观察下面三个特殊的等式
11?2??1?2?3?0?1?2?
312?3??2?3?4?1?2?3?
313?4??3?4?5?2?3?4?
31将这三个等式的两边相加,可以得到1×2+2×3+3×4=?3?4?5?20
3读完这段材料,请你思考后回答:
⑴1?2?2?3???100?101?
1n?n?1?,其中n2⑵1?2?3?2?3?4???n?n?1??n?2?? ⑶1?2?3?2?3?4???n?n?1??n?2?? 4、已知:2?22334455 ?22?,3??32?,4??42?,5??52?,338815152424bb …,若10??102?符合前面式子的规律,则a?b?aa参考答案:
一、1、(1)1004的平方(2)n+1的平方
2、23 30。数列中每两个相邻数字间的差分别是1,2,3,4,5,6,7。 3、13。这一数列后面一个数是前面相邻两个数的和。
4、34 。考虑时,可以从第一个数开始,每3个数加一个括号(1,2,3),(2,3,4),(3,4,5),……一共加了33个括号,剩下的一个必是第100个。每个括号的第一个数分别是1,2,3,……因此第100个数必然是34。
5、28。3+3=6 6+4=10 10+5=15 15+6=21 21+7=28, 所以第6个是28。其实一般这类的规律题无非就是在数的基础上加减乘除,有些麻烦点的就是一个数乘上倍数后在加1或减1。
6、A 7、33 二、 1、602 2、圆
三、1、13?23?33?43?53?152 2、10000
1113、 ⑴343400 或?100?101?102 ⑵n?n?1??n?2? ⑶n?n?1??n?2??n?3?
3434、109.
规律发现专题训练
1.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑
色地砖4块;那么第(n)个图案中有白色地砖 块。 ..
……
2.我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万
1事非。”如图,在一个边长为1的正方形纸版上,依次贴上面积为,第3题
2111,,…,n的矩形彩色纸片(n为大于1的整数)。请你用“数4821111形结合”的思想,依数形变化的规律,计算?????n= 。
2482
3.有一列数:第一个数为x1=1,第二个数为x2=3,第三个数开始依次记为x3,x4,…,xn;从第二个数开始,每个数是它相邻两个数和的一半。(如:x2=
x1?x3) 2(1)求第三、第四、第五个数,并写出计算过程; (2)根据(1)的结果,推测x8= ; (3)探索这一列数的规律,猜想第k个数xk= .(k是大于2的整数)
4.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线). 继续对折,对折时每次
折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到_ 条折痕 .如果对折n次,可以得到 条折痕 .
5. 观察下面一列有规律的数 123456,,,,,,??, 根据这个规律可知第n个数是 (n是正整数) 3815243548
6.古希腊数学家把数1,3,6,10,15,21,……,叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 。
7. 按照一定顺序排列的一列数叫数列,一般用a1,a2,a3,…,an表示一个数列,可简记为{an}.
2现有数列{an}满足一个关系式:an+1=an-nan+1,(n=1,2,3,…,n),且a1=2.根据已知条件计算
a2,a3,a4的值,然后进行归纳猜想an=_________.(用含n的代数式表示)
8.观察下面一列数:-1,2,-3,4,-5,6,-7,...,将这列数排成下列形式 按照上述规律排下去,那么第10行从左边第9个数-1是 . 2-34 -56-7-910-1112-1314-1516
......第8题
9.观察下列等式9-1=8
16-4=12 25-9=16 36-16=20 …………
这些等式反映自然数间的某种规律,设n(n≥1)表示自然数,用关于n的等式表示这个规律为.
10.如图是阳光广告公司为某种商品设计的商标图案, 图中阴影部分为红色。若每个小长方形的面积都1,
则红色的面积是 。
11.如下图,从A地到C地,可供选择的方案是 走水路、走陆路、走空中.从A地到B地有2条水
路、2条陆路,从B地到C地有3条陆路可供选择,走空中从A地不经B地直接到C地.则从
£¨μú9 ìaí?£? A地到C地可供选择的方案有( )
A.20种 B.8种 C. 5种 D.13种
12.某校的一间阶梯教室,第1排的座位数为12,从第
2排开始,每一排都比前一排增加a个座位。(1)请你在下表的空格里填写一个适当的代数式: 第1排的座位数 12 第2排的座第3排的座第4排的座位数 12+a 位数 位数 … … 第n排的座位数 第17题
(2)已知第15排座位数是第5排座位数的2倍,求a的值,并计算第21排有多少座位?
13.探索:⑴一条直线可以把平面分成两部分,两条直线最多可以把平面分成4部分,三条直线最多可以把平面分成 部分,四条直线最多可以把平面分成 部分,试画图说明;⑵n条直线最多可以把平面分成几部分?
1211111114.先观察=(?)?(?)=1-= ?3312231?22?313111111111=(?)?(?)?(?)=1-= ??441?22?33?4122334再计算
1111?????的值. 1?22?33?4n(n?1)
15..观察下列顺序排列的等式:
9×0+1=1 9×1+2=11 9×2+3=21 9×4+5=41 …,猜想:第21个等式应为:
16.我们把分子为1的分数叫做单位分数. 如,,…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如=?,=?115 ○ □
11213141213161311111,=?,… 4520412(1)根据对上述式子的观察,你会发现=?. 请写出□,○所表示的数;
(2)进一步思考,单位分数(n是不小于2的正整数)=?,请写出△,☆所表示的式。
☆ △
1n11 17.你到过县城的拉面馆吗?拉面馆的师傅,能把一根很粗的面条,先两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多根细面条,如下面草图所示。请问这样第__________次可拉出256根面条。
18.我国古代的“河图”是由3×3的方格构成,每个格内均有数目不等 的点图,每一行、每一列以及每条对角线上的三个点图的点数之和 均相等.如图,给出了“河图”的部分点图,请你推算出M处所对应 的点图 A.· B.·· C. D.
19.计算1?2?3?4?5?6???2007?2008的结果是( ) A. -2008 B. -1004 C. -1 D. 0