. . .
2014春中央电大经济数学基础形成性考核册及参考答案
作业(一)
(一)填空题 1.limx?sinxx?0x?___________________.答案:0 2.设f(x)???x2?1,x?0?,在x?0处连续,则k?________.答案:1 ?k,x?03.曲线y?x在(1,1)的切线方程是 .答案:y?12x?12 4.设函数f(x?1)?x2?2x?5,则f?(x)?____________.答案:2x 5.设f(x)?xsinx,则f??(π)?__________.答案:?π22 (二)单项选择题 1. 函数y?x?1x2?x?2的连续区间是( )答案:D A.(??,1)?(1,??) B.(??,?2)?(?2,??)
C.(??,?2)?(?2,1)?(1,??) D.(??,?2)?(?2,??)或(??,1)?(1,??)2. 下列极限计算正确的是( )答案:B A.limxx?0x?1 B.limxx?0?x?1
C.lim1x?0xsinx?1 D.limsinxx??x?1
3. 设y?lg2x,则dy?( ).答案:B
. . . .
. . .
A.
12xdx B.1xln10dx C.ln10xdx D.1xdx 4. 若函数f (x)在点x0处可导,则( )是错误的.答案:B
A.函数f (x)在点x0处有定义 B.limx?xf(x)?A,但A?f(x0)
0 C.函数f (x)在点x0处连续 D.函数f (x)在点x0处可微 5.当x?0时,下列变量是无穷小量的是( ). 答案:C A.2x B.sinxx C.ln(1?x) D.cosx (三)解答题 1.计算极限
(1)limx2?3x?2(x?2)(x?1)x?1x?1x2?1? lim)(x?1) = x?1(x?1lim2(x?1) = x?1?2 (2)limx2?5x?6(x?2)(x?3)x?31x?2x2?6x?8=lim) = x?2(x?2)(x?4lim =
x?2(x?4)2(3)lim1?x?1(1?x?1)(1?x?1)x?0x=limx?0x(1?x?1) =lim?xx(1?x?1)=lim?11x?0(1?x?1)??2 x?0x21?3?52(4)lim?3x?5x??3x2?2x?4?limxxx???1 3?2x?43x2(5)limsin3xx?0sin5x?lim5xsin3x33x?03xsin5x5=5 . . . .
. . .
(6)limx2?4x?2sin(x?2)?lim(x?2)(x?2)x?2sin(x?2)?4
??xsin12.设函数f(x)??x?b,x?0?a,x?0,
??sinx?xx?0问:(1)当a,b为何值时,f(x)在x?0处有极限存在? (2)当a,b为何值时,f(x)在x?0处连续.
答案:(1)当b?1,a任意时,f(x)在x?0处有极限存在; (2)当a?b?1时,f(x)在x?0处连续。 3.计算下列函数的导数或微分: (1)y?x2?2x?log2x?22,求y? 答案:y??2x?2xln2?1xln2 (2)y?ax?bcx?d,求y?
答案:y?=
a(cx?d)?c(ax?b)(cx?d)2?ad?cb(cx?d)2 (3)y?13x?5,求y?
. . . .
. . .
答案:y?13x?5=(3x?5)?12 y???32(3x?5)3
(4)y?x?xex,求y?
答案:y??12x?(x?1)ex
(5)y?eaxsinbx,求dy
答案:y??(eax)?sinbx?eax(sinbx)?
?aeaxsinbx?eaxcosbx?b
?eax(asinbx?bcosbx) dy?eax(asinbx?bcosbx)dx
1(6)y?ex?xx,求dy
dy?(311答案:2x?xx2e)dx (7)y?cosx?e?x2,求dy 答案:dy?(2xe?x2?sinx2x)dx
(8)y?sinnx?sinnx,求y? 答案:y?=nsinn?1xcosx+cosnxn=n(sinn?1xcosx?cosnx)
. . . .
. . .
(9)y?ln(x?1?x2),求y?
1?11x122??答案:y?? (1?(1?x)2x)(x?1?x)?(1?)?121x?1?x2x?1?x221(10)y?2cotx?1?3x2?2xx,求y?
12cotx5答案:y??ln23?1x?2?1x?6 x2sin126x4.下列各方程中y是x的隐函数,试求y?或dy (1)x2?y2?xy?3x?1,求dy 答案:解:方程两边关于X求导:2x?2yy??y?xy??3?0
(2y?x)y??y?2x?3 , dy?y?3?2x2y?xdx
(2)sin(x?y)?exy?4x,求y?
答案:解:方程两边关于X求导cos(x?y)(1?y?)?exy(y?xy?)?4
(cos(x?y)?exyx)y??4?yexy?cos(x?y)
y??4?yexy?cos(x?y)xexy?cos(x?y) . . x?1?x21?x21?x2. .