好文档 - 专业文书写作范文服务资料分享网站

物理学教程(第二版)(上册)课后习题答案详细讲解

天下 分享 时间: 加入收藏 我要投稿 点赞

分析 动力学问题一般分为两类:(1) 已知物体受力求其运动情况;(2) 已知物体的运动情况来分析其所受的力.当然,在一个具体题目中,这两类问题并无截然的界限,且都是以加速度作为中介,把动力学方程和运动学规律联系起来.本题关键在列出动力学和运动学方程后,解出倾角与时间的函数关系α=f(t),然后运用对t 求极值的方法即可得出数值来.

解 取沿斜面为坐标轴Ox,原点O 位于斜面顶点,则由牛顿第二定律有

mgsinα?mgμcosα?ma (1)

又物体在斜面上作匀变速直线运动,故有

l11?at2?g?sinα?μcosα?t2 cosα22则 t?2l (2)

gcosα?sinα?μcosα?为使下滑的时间最短,可令

dt?0,由式(2)有 dα?sinα?sinα?μcosα??cosα?cosα?μsinα??0

1,??49o μ则可得 tan2α??此时 tmin?2l?0.99s

gcos??sin???cos??2 -7 工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m1 =2.00 ×102 kg,乙块质量为m2 =1.00 ×102 kg.设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的力以及乙块对甲块的作用力:(1) 两物块以10.0 m·s-2 的加速度上升;(2) 两物块以1.0 m·s-2 的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?

题 2-7 图

分析 预制板、吊车框架、钢丝等可视为一组物体.处理动力学问题通常采用“隔离体”的方法,分析物体所受的各种作用力,在所选定的惯性系中列出它们各自的动力学方程.根据连接体中物体的多少可列出相应数目的方程式.结合各物体之间的相互作用和联系,可解决物体的运动或相互作用力.

解 按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy 轴正方向(如图所示).当框架以加速度a 上升时,有

FT-( m1 +m2 )g =(m1 +m2 )a (1)

FN2 - m2 g =m2 a (2)

解上述方程,得

FT =(m1 +m2 )(g +a) (3)

FN2 =m2 (g +a) (4)

(1) 当整个装置以加速度a =10 m·s-2 上升时,由式(3)可得绳所受力的值为

FT =5.94 ×103 N 乙对甲的作用力为

F′N2 =-FN2 =-m2 (g +a) =-1.98 ×103 N (2) 当整个装置以加速度a =1 m·s-2 上升时,得绳力的值为

FT =3.24 ×103 N

此时,乙对甲的作用力则为

F′N2=-1.08 ×103 N

由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受力也不同,加速度大,绳中力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.

2 -8 如图(a)所示,已知两物体A、B 的质量均为m=3.0kg 物体A 以加速度a =1.0 m·s-2 运动,求物体B 与桌面间的摩擦力.(滑轮与连接绳的质量不计) 分析 该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到力方向是不同的.

解 分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A、B 及滑轮列动力学方程,有

mA g -FT =mA a (1)

F′T1 -Ff =mB a′ (2) F′T -2FT1 =0 (3)

考虑到mA =mB =m, FT =F′T , FT1 =F′T1 ,a′=2a,可联立解得物体与桌面的摩擦力

Ff?mg??m?4m?a?7.2N 2

题 2-8 图

讨论 动力学问题的一般解题步骤可分为:(1) 分析题意,确定研究对象,分析受力,选定坐标;(2) 根据物理的定理和定律列出原始方程组;(3) 解方程组,得出文字结果;(4) 核对量纲,再代入数据,计算出结果来.

2 -9 质量为m′的长平板A 以速度v′在光滑平面上作直线运动,现将质量为m 的木块B 轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板取得共同速度?

分析 当木块B 平稳地轻轻放至运动着的平板A 上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.

该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.

解1 以地面为参考系,在摩擦力Ff=μmg 的作用下,根据牛顿定律分别对木块、平板列出动力学方程

Ff=μmg =ma1

Ff=-Ff=m′a2

a1 和a2 分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a =a1 +a2 ,木块相对平板以初速度- v′作匀减速运动直至最终停止.由运动学规律有

- v′2 =2as

由上述各式可得木块相对于平板所移动的距离为

解2 以木块和平板为系统,它们之间一对摩擦力作的总功为

W?F(?Ffl??mgs fs?l)式中l 为平板相对地面移动的距离.

由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有 m′v′=(m′+m) v″

由系统的动能定理,有

11μmgs?m?v?2??m??m?v??2

22由上述各式可得

m?v?2 s?2μg?m??m?2 -10 如图(a)所示,在一只半径为R 的半球形碗,有一粒质量为m 的小钢球,当小球以角速度ω在水平面沿碗壁作匀速圆周运动时,它距碗底有多高?

题 2-10 图

分析 维持钢球在水平面作匀角速度转动时,必须使钢球受到一与向心加速度相对应的力(向心力),而该力是由碗壁对球的支持力FN 的分力来提供的,由于支持力FN 始终垂直于碗壁,所以支持力的大小和方向是随ω而变的.取图示Oxy 坐标,列出动力学方程,即可求解钢球距碗底的高度.

解 取钢球为隔离体,其受力分析如图(b)所示.在图示坐标中列动力学方程

FNsinθ?man?mRω2sinθ (1)

FNcosθ?mg (2)

且有 cosθ?由上述各式可解得钢球距碗底的高度为

h?R?g 2ω?R?h? (3)

R可见,h 随ω的变化而变化.

2 -11 在如图(a)所示的轻滑轮上跨有一轻绳,绳的两端连接着质量分别为1 kg和2 kg的物体A和B,现以50 N的恒力F向上提滑轮的轴,不计滑轮质量及滑轮与绳间摩擦,求A和B的加速度各为多少?

题 2-11 图

分析 在上提物体过程中,由于滑轮可以转动,所以A、B两物体对地加速度并不相同,故应将A、B和滑轮分别隔离后,运用牛顿定律求解,本题中因滑轮质量可以不计,故两边绳子力相等,且有F?2FT. 解 隔离后,各物体受力如图(b)所示,有 滑轮 F?2FT?0 A FT?mAg?mAaA B FT?mBg?mBaB 联立三式,得 aA?15.2m?s?2,aB?2.7m?s?2

讨论 如由式F?(mA?mB)g?(mA?mB)a求解,所得a是A、B两物体构成

的质点系的质心加速度,并不是A、B两物体的加速度.上式叫质心运动定理. 2 -12 一质量为50 g的物体挂在一弹簧末端后伸长一段距离后静止,经扰动后

物理学教程(第二版)(上册)课后习题答案详细讲解

分析动力学问题一般分为两类:(1)已知物体受力求其运动情况;(2)已知物体的运动情况来分析其所受的力.当然,在一个具体题目中,这两类问题并无截然的界限,且都是以加速度作为中介,把动力学方程和运动学规律联系起来.本题关键在列出动力学和运动学方程后,解出倾角与时间的函数关系α=f(t),然后运用对t求极值的方法即可得出数值来.解取沿斜面为坐标轴Ox,原点
推荐度:
点击下载文档文档为doc格式
1s3j83cemy6k2tg1xudp48fsc2a7r600rkv
领取福利

微信扫码领取福利

微信扫码分享