五年级数学思维训练100题(附答案)
82.甲、乙、丙三数的和是100,甲数除以乙数与丙数除以甲数的结果都是商5余1。问:乙数是多少?
解:设乙数是x,那么甲数就是5x+1 丙数是5(5x+1)+1=25x+6 因此x+5x+1+25x+6=100 31x=93 x=3 所以乙数是3
83.12345654321×(1+2+3+4+5+6+5+4+3+2+1)是哪个数的平方 解:12345654321=111111的平方
1+2+3+4+5+6+5+4+3+2+1=36=6的平方 所以原式=666666的平方。
84.某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位。问:这个剧院一共有多少个座位?
解:第一排有70-24*2=22个座位 所以总座位数是(22+70)*25/2 =1150
85. 某城市举行小学生数学竞赛,试卷共有20道题。评分标准是:答对一道给3分,没答的题每题给1分,答错一道扣1分。问:所有参赛学生的得分总和是奇数还是偶数?为什么? 解:一定是偶数,因为每个人20道题得分都分别是奇数,20个奇数的和一定是偶数。每个人的得分都是偶数,所以无论有多少参赛学生,参赛学生的得分总和一定是偶数。 86. 可以分解为三个质数之积的最小的三位数是几? 解:102=2*3*17
87. 两个质数的和是39,求这两个质数的积。 解:注意到奇偶性可以知道这2个质数分别是2和37 它们的乘积是2*37=74
第 16 页 共 19 页
五年级数学思维训练100题(附答案)
88. 有1,2,3,4,5,6,7,8,9九张牌,甲、乙、丙各拿了三张。甲说:“我的三张牌的积是48。”乙说:“我的三张牌的和是15。”丙说:“我的三张牌的积是63。”问:他们各拿了哪三张牌?
解:63=7*1*9 所以丙拿的1,7,9
48=2*3*8 所以甲拿的2,3,8 4+5+6=15 因此乙拿的是4,5,6
89. 四个连续自然数的积是3024,求这四个数。 解:考虑末尾数字,1*2*3*4末尾是4 6*7*8*9末尾也是4 其他情况下末尾都是0 11*12*13*14=24024太大 6*7*8*9=3024刚好 所以这4个数是6,7,8,9
90. 证明:任何一个三位数,连着写两遍得到一个六位数,这个六位数一定能被7,11,13整除。
解:该数形如ABCABC=ABC*1001 1001=7*11*13
所以这个六位数一定能被7,11,13整除。
91.在1~100中,所有的只有3个约数的自然数的和是多少? 解:4+9+25+49=87
92. 有一种电子钟,每到正点响一次铃,每过九分钟亮一次灯。如果中午12点整它既响铃又亮灯,那么下一次既响铃又亮灯是什么时间? 解:[60,9]=180 180/60=3
下次是下午3点钟。
第 17 页 共 19 页
五年级数学思维训练100题(附答案)
93. 有一个数除以3余2,除以4余1。问:此数除以12余几? 解:除以3余2的数是2,5,8,11,14。。。。。。
除以4余1的数是1,5,9,。。。。。。 所以此数除以12余5
94. 把16拆成若干个自然数的和,要求这些自然数的乘积尽量大,应如何拆? 解:16=3+3+3+3+2+2 乘积是3*3*3*3*2*2=324
95. 小明按1~ 3报数,小红按1~ 4报数。两人以同样的速度同时开始报数,当两人都报了100个数时,有多少次两人报的数相同? 解:每12次作为一个周期
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 4 1 2 3 4 1 2 3 4 每个周期两人有3次报的数一样 100=12*8+4
所以两个人有8*3+3=27次报的数相同。
96. 某自然数加10或减10皆为平方数,求这个自然数。 解:设这个数是x x+10=m^2 x-10=n^2
m^2-n^2=20 (m+n)(m-n)=20 m=6,n=4
所以x=6^2-10=26
97. 已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒。求火车的速度和长度。
第 18 页 共 19 页
五年级数学思维训练100题(附答案)
解:120秒行驶的距离是桥长+车长
80秒行驶的距离是桥长-车长
所以80(1000+车长)=120(1000-车长) 车长=200米
火车的速度是10米/秒
98. 甲、乙二人按顺时针方向沿圆形跑道练习跑步,已知甲跑一圈要12分,乙跑一圈要15分,如果他们分别从圆形跑道直径的两端同时出发,那么出发后多少分甲追上乙? 解:(1/2)/(1/12-1/15)=(1/2)/(1/60)=30分钟
99. 甲、乙比赛乒乓球,五局三胜。已知甲胜了第一局,并最终获胜。问:各局的胜负情况有多少种可能? 解:甲 甲 甲
甲 甲 乙 甲 甲 甲 乙 乙 甲 甲 乙 甲 甲 甲 乙 甲 乙 甲 甲 乙 乙 甲 甲
经枚举发现共有6种可能。
100. 甲、乙二人 2时共可加工 54个零件,甲加工 3时的零件比乙加工4时的零件还多4个。问:甲每时加工多少个零件? 解:甲乙二人一小时共可加工零件27个 设甲每小时加工x个,那么乙每小时加工27-x个 根据条件得3x=4(27-x)+4 7x=112 x=16
答:甲每小时加工零件16个。
第 19 页 共 19 页