好文档 - 专业文书写作范文服务资料分享网站

中考数学—反比例函数的综合压轴题专题复习含详细答案

天下 分享 时间: 加入收藏 我要投稿 点赞

中考数学—反比例函数的综合压轴题专题复习含详细答案

一、反比例函数

1.如图,已知A(﹣4, ),B(﹣1,2)是一次函数y=kx+b与反比例函数 (m≠0,m<0)图象的两个交点,AC⊥x

轴于

C,BD⊥y

轴于

D.

(2)求一次函数解析式及m的值;

(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值? (3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标. 【答案】(1)解:当﹣4<x<﹣1时,一次函数大于反比例函数的值;

(2)把A(﹣4, ),B(﹣1,2)代入y=kx+b得 , 解得

所以一次函数解析式为y= x+

把B(﹣1,2)代入y=

得m=﹣1×2=﹣2;

(3)解:如下图所示:

),

设P点坐标为(t, t+

∵△PCA和△PDB面积相等, ∴

?

?(t+4)=

?1?(2﹣

t﹣

),即得t=﹣

∴P点坐标为(﹣ ,

).

【解析】【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y= 可计算出m的值;(3)设P点坐标为(t, t+ ),利用三角形面积公式可得到 ? ?(t+4)= ?1?(2﹣ t﹣ ),解方程得到t=﹣ ,从而可确定P点坐标.

2.如图,一次函数y1=k1x+b与反比例函数y2= 的图象交于点A(4,m)和B(﹣8,﹣

2),与y轴交于点C.

(1)m=________,k1=________;

(2)当x的取值是________时,k1x+b> ;

(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标. 【答案】(1)4; (2)﹣8<x<0或x>4

(3)解:由(1)知,y1= 的坐标是(4,4). ∴CO=2,AD=OD=4. ∴S梯形ODAC=

?OD=

x+2与反比例函数y2= , ∴点C的坐标是(0,2),点A

×4=12,

∵S四边形ODAC:S△ODE=3:1, ∴S△ODE=

S梯形ODAC=

×12=4,

OD?DE=4,

∴DE=2.

∴点E的坐标为(4,2). 又点E在直线OP上, ∴直线OP的解析式是y= ∴直线OP与y2=

x,

).

的图象在第一象限内的交点P的坐标为(4 ,2

【解析】【解答】解:(1)∵反比例函数y2= 的图象过点B(﹣8,﹣2), ∴k2=(﹣8)×(﹣2)=16, 即反比例函数解析式为y2=

将点A(4,m)代入y2= ,得:m=4,即点A(4,4), 将点A(4,4)、B(﹣8,﹣2)代入y1=k1x+b, 得:

解得:

∴一次函数解析式为y1= x+2,

故答案为:4, ;(2)∵一次函数y1=k1x+2与反比例函数y2= 的图象交于点A(4,4)和B(﹣8,﹣2),

∴当y1>y2时,x的取值范围是﹣8<x<0或x>4, 故答案为:﹣8<x<0或x>4;

【分析】(1)由A与B为一次函数与反比例函数的交点,将B坐标代入反比例函数解析式中,求出k2的值,确定出反比例解析式,再将A的坐标代入反比例解析式中求出m的值,确定出A的坐标,将B坐标代入一次函数解析式中即可求出k1的值;(2)由A与B横坐标分别为4、﹣8,加上0,将x轴分为四个范围,由图象找出一次函数图象在反比例函数图象上方时x的范围即可;(3)先求出四边形ODAC的面积,由S反比例函数解析式即可得.

四边形

ODAC:

S△ODE=3:1得到△ODE的面积,继而求得点E的坐标,从而得出直线OP的解析式,结合

3.如图,反比例函数y1= 的图象与一次函数y2= x的图象交于点A、B,点B的横坐标

中考数学—反比例函数的综合压轴题专题复习含详细答案

中考数学—反比例函数的综合压轴题专题复习含详细答案一、反比例函数1.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(2)求一次函数解析式及m的值;
推荐度:
点击下载文档文档为doc格式
1rtuc5dusp7e16g2f5026bod04q39t00p0b
领取福利

微信扫码领取福利

微信扫码分享