函数的单调性与导数教案
一、目标
知识与技能:了解可导函数的单调性与其导数的关系;能利用导数研究函数的单调性,会求函数的单调区间。
过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;
情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
二、重点难点
教学重点:利用导数研究函数的单调性,会求不超过4次的多项式函数的单调区间
教学难点:利用导数研究函数的单调性,会求不超过4次的多项式函数的单调区间 三、教学过程:
函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.我们以导数为工具,对研究函数的增减及极值和最值带来很大方便. 四、学情分析
我们的学生属于平行分班,没有实验班,学生已有的知识和实验水平有差距。需要教师指导并借助动画给予直观的认识。 五、教学方法
发现式、启发式
新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
六、课前准备 1.学生的学习准备:
2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。 七、课时安排: 1课时 八、教学过程
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。 提问
1.判断函数的单调性有哪些方法?
(引导学生回答“定义法”,“图象法”。) 2.比如,要判断y=x2的单调性,如
何进行?(引导学生回顾分别用定义法、图象法完成。) 3.还有没有其它方法?如果遇到函数: y=x3-3x判断单调性呢?(让学生短时 间内尝试完成,结果发现:用“定义法”,
作差后判断差的符号麻烦;用“图象法”,图象很难画出来。) 4.有没有捷径?(学生疑惑,由此引出课题)这就要用到咱们今天要学的导数法。
以问题形式复习相关的旧知识,同时引出新问题:三次函数判断单调性,定义法、图象法很不方便,有没有捷径?通过创设问题情境,使学生产生强烈的问题意识,积极主动地参与到学习中来。 (二)情景导入、展示目标。
设计意图:步步导入,吸引学生的注意力,明确学习目标。 (探索函数的单调性和导数的关系)问:函数的单调性和导数有何关系呢?
教师仍以y=x2为例,借助几何画板动态演示,让学生记录结果在课前发的表格第二行中:
函数及图象单调性切线斜率k的正负导数的正负 问:有何发现?(学生回答) 问:这个结果是否具有一般性呢? (三)合作探究、精讲点拨。 我们来考察两个一般性的例子:
(教师指导学生动手实验:把准备的牙签放在表中曲线y=f(x)的图象上,作为曲线的切线,移动切线并记录结果在上表第三、四行中。)
问:能否得出什么规律? 让学生归纳总结,教师简单板书: