好文档 - 专业文书写作范文服务资料分享网站

2013年北京市中考数学试卷解析答案

天下 分享 时间: 加入收藏 我要投稿 点赞

14.一次函数图象与几何变换

直线y=kx+b,(k≠0,且k,b为常数)

①关于x轴对称,就是x不变,y变成﹣y:﹣y=kx+b,即y=﹣kx﹣b; (关于X轴对称,横坐标不变,纵坐标是原来的相反数)

②关于y轴对称,就是y不变,x变成﹣x:y=k(﹣x)+b,即y=﹣kx+b; (关于y轴对称,纵坐标不变,横坐标是原来的相反数)

③关于原点对称,就是x和y都变成相反数:﹣y=k(﹣x)+b,即y=kx﹣b. (关于原点轴对称,横、纵坐标都变为原来的相反数)

15.反比例函数综合题 (1)应用类综合题

能够从实际的问题中抽象出反比例函数这一数学模型,是解决实际问题的关键一步,培养了学生的建模能力和从实际问题向数学问题转化的能力.在解决这些问题的时候我们还用到了反比例函数的图象和性质、待定系数法和其他学科中的知识.

(2)数形结合类综合题

利用图象解决问题,从图上获取有用的信息,是解题的关键所在.已知点在图象上,那么点一定满足这个函数解析式,反过来如果这点满足函数的解析式,那么这个点也一定在函数图象上.还能利用图象直接比较函数值或是自变量的大小.将数形结合在一起,是分析解决问题的一种好方法.

16.二次函数的性质

二次函数y=ax+bx+c(a≠0)的顶点坐标是(﹣

2

),对称轴直线x=

﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:

①当a>0时,抛物线y=ax+bx+c(a≠0)的开口向上,x<﹣大而减小;x>﹣

2

时,y随x的增

时,y随x的增大而增大;x=﹣时,y取得最小值

即顶点是抛物线的最低点.

②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣

第41页(共50页)

时,y随x的增

大而增大;x>﹣

时,y随x的增大而减小;x=﹣时,y取得最大值

即顶点是抛物线的最高点.

③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左(右)平移|﹣

17.二次函数图象上点的坐标特征

二次函数y=ax+bx+c(a≠0)的图象是抛物线,顶点坐标是(﹣①抛物线是关于对称轴x=﹣

2

|个单位,再向上或向下平移||个单位得到的.

).

成轴对称,所以抛物线上的点关于对称轴对称,

且都满足函数函数关系式.顶点是抛物线的最高点或最低点. ②抛物线与y轴交点的纵坐标是函数解析中的c值.

③抛物线与x轴的两个交点关于对称轴对称,设两个交点分别是(x1,0),(x2,0),则其对称轴为x=

18.平行线的性质 1、平行线性质定理

定理1:两条平行线被第三条直线所截,同位角相等. 简单说成:两直线平行,同位角相等.

定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补.

定理3:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.

2、两条平行线之间的距离处处相等.

19.全等三角形的判定与性质

(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.

(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.

第42页(共50页)

20.等边三角形的性质

(1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.

①它可以作为判定一个三角形是否为等边三角形的方法;

②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.在等边三角形中,腰和底、顶角和底角是相对而言的.

(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°. 等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.

21.含30度角的直角三角形

(1)含30度角的直角三角形的性质:

在直角三角形中,30°角所对的直角边等于斜边的一半.

(2)此结论是由等边三角形的性质推出,体现了直角三角形的性质,它在解直角三角形的相关问题中常用来求边的长度和角的度数.

(3)注意:①该性质是直角三角形中含有特殊度数的角(30°)的特殊定理,非直角三角形或一般直角三角形不能应用;

②应用时,要注意找准30°的角所对的直角边,点明斜边.

22.勾股定理

(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.

如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2. (2)勾股定理应用的前提条件是在直角三角形中.

(3)勾股定理公式a2+b2=c2 的变形有:a= ,b= 及c= . (4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.

第43页(共50页)

23.等腰直角三角形

(1)两条直角边相等的直角三角形叫做等腰直角三角形.

(2)等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径(因为等腰直角三角形的两个小角均为45°,高又垂直于斜边,所以两个小三角形均为等腰直角三角形,则两腰相等);

(3)若设等腰直角三角形内切圆的半径r=1,则外接圆的半径R= +1,所以r:R=1: +1.

24.三角形中位线定理 (1)三角形中位线定理:

三角形的中位线平行于第三边,并且等于第三边的一半. (2)几何语言:

如图,∵点D、E分别是AB、AC的中点

∴DE∥BC,DE=BC.

25.平行四边形的判定与性质 平行四边形的判定与性质的作用

平行四边形对应边相等,对应角相等,对角线互相平分及它的判定,是我们证明直线的平行、线段相等、角相等的重要方法,若要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.

运用定义,也可以判定某个图形是平行四边形,这是常用的方法,不要忘记平行四边形的定义,有时用定义判定比用其他判定定理还简单.

凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明,应直接

第44页(共50页)

运用平行四边形的性质和判定去解决问题.

26.矩形的性质

(1)矩形的定义:有一个角是直角的平行四边形是矩形. (2)矩形的性质

①平行四边形的性质矩形都具有; ②角:矩形的四个角都是直角; ③边:邻边垂直;

④对角线:矩形的对角线相等;

⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.

(3)由矩形的性质,可以得到直角三角形的一个重要性质,直角三角形斜边上的中线等于斜边的一半.

27.四边形综合题 四边形综合题.

28.切线的性质 (1)切线的性质

①圆的切线垂直于经过切点的半径.

②经过圆心且垂直于切线的直线必经过切点. ③经过切点且垂直于切线的直线必经过圆心. (2)切线的性质可总结如下:

如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直. (3)切线性质的运用

由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.

第45页(共50页)

2013年北京市中考数学试卷解析答案

14.一次函数图象与几何变换直线y=kx+b,(k≠0,且k,b为常数)①关于x轴对称,就是x不变,y变成﹣y:﹣y=kx+b,即y=﹣kx﹣b;(关于X轴对称,横坐标不变,纵坐标是原来的相反数)②关于y轴对称,就是y不变,x变成﹣x:y=k(﹣x)+b,即y=﹣kx+b;(关于y轴对称,纵坐标不变,横坐标是原来的相反数)
推荐度:
点击下载文档文档为doc格式
1r1cm30q240mq5e7eayt5nd0e7n2rf017c4
领取福利

微信扫码领取福利

微信扫码分享