好文档 - 专业文书写作范文服务资料分享网站

线性回归方程中的相关系数r

天下 分享 时间: 加入收藏 我要投稿 点赞

SPSS中pearson(皮尔逊相关系数)看r值还是P值,确定相关性

两个值都要看,r值表示在样本中变量间的相关系数,表示相关性的大小;p值是检验值,是检验两变量在样本来自的总体中是否存在和样本一样的相关性。

SPSS回归系数 SIG

在SPSS软件统计结果中,不管是回归分析还是其它分析,都会看到“SIG”,SIG=significance,意为“显著性”,后面的值就是统计出的P值,如果P值0.01

sig是指的的显著性水平,就是p值,一般来说接近0.00越好,过大的话只能说不显著,sig是F检验的结果,<0.01代表方程通过检验,进行回归分析是有效的

F表示数据的方差,sig表示显著性,也就是对F检验的结果,如果sig>0.05则说明模型受误差因素干扰太大不能接受。R是复相关系数,表示观测值和模型描述值之间的线性相关系数,越大越好。R方通俗的说就是解释率,就是说你的自变量能够解释多少因变量的变化。具体到你这个就是模型不能接受,自变量解释了22.1%,剩下的只能用误差解释。

spss软件的线性回归分析中,输出了一个anova表,表中的回归、残差、平方和、df、均方、F、sig分别代表什么

回归是方法

残差是实测与预计值的差值

平方和有很多个,不同的平方和的意思不一样

df是自由度

均方是方差除以自由度 f是f分布的统计量 sig是p值

anova表中的“回归平方和”表示反应变量的变异中的回归模式中所包含的自变量所能解释的部分。“残差平方和”代表反应变量的变异中没有被回归模型所包含的变量解释的部分。这两个值与样本量及模型中自变量的个数有关,样本量越大,相应变异就越大。df是自由度,是自由取值的变量个数,F为F检验统计量,用于检验该回归方程是否有意义,当Sig对应的值小于0.05(当显著性水平为0.05时)时,说明所建立的回归方程具有统计学意义,即自变量和因变量之间存在线性关系。

多元线性回归分析中,t检验与F检验有何不同

t检验常能用作检验回归方程中各个参数的显著性,而f检验则能用作检验整个回归关系的显著性。各解释变量联合起来对被解释变量有显著的线性关系,并不意味着每一个解释变量分别对被解释变量有显著的线性关系

F检验主要是检验因变量同多个自变量的整体线性关系是否显著,在k个自变量中,只要有一个自变量同因变量的线性关系显著,t检验则是对每个回归系数分别进行单独的检验,以判断每个自变量对因变量的影响是否显著。

计算结果肺活量例子

对数据标准化,即将原始数据减去相应变量的均数后再除以该变量的标准差,计算得到的回归方程称为标准化回归方程,相应得回归系数为标准化回归系数。 标准化回归系数(Beta值)在多元回归中被用来比较变量间的重要性 B是指回归系数,beta是指标准回归系数,beta=B/S(B),beta是用来比较各个系数之间的绝对作用或者贡献的大小,B值是不能判断的绝对贡献的。

t值是对该回归系数B做假设检验的结果,P值小于0.05才可以认为有意义,但是具体问题要具体分析,有的时候要考虑交互作用等

常数项为负 p值0.04,拒绝常数项为0的假设,统计显著,没问题

beta coefficient就是标准回归系数,它是首先把各个自变量进行Z转换(数据值-数据平均值然后除以标准差)之后再进行回归,此时得出的回归系数称为标准化回归系数。Z转换可以把各个自变量的数级、量纲统一标准化,也就可以根据标准化回归系数的大小比较出各个自变量在回归方程中的效应大小。

标准回归系数

standardizedregressioncoefficient或standardregressioncoefficient

消除了因变量y和自变量x1,x2,…xn所取单位的影响之后的回归系数,其绝对值的大小直接反映了xi对y的影响程度 计算方法

对数据标准化,即将原始数据减去相应变量的均数后再除以该变量的标准差,计算得到的回归方程称为标准化回归方程,相应得回归系数为标准化回归系数。

公式

若假定回归方程的形式如下:

Y=b0+b1X1+b2X2+…+bjXj+…+bJXJ(Y是估计值) 其中,回归参数b0,b1,…,bJ通过最小二乘法求得。 则标准化回归系数bj'=bj*(Xj的标准差/Y的标准差) 理解方法

标准化回归系数(Beta值)在多元回归中被用来比较变量间的重要性。但是由于重要性这一词意义的含糊性,这一统计常被误用。

有时人们说重要性,是指同样的条件下,哪一个东西更有效。在提高教学质量上,是硬件条重要还是师资更重要?如果是师资更重要,那么同样的物力投在师资上就可以更快地提高教学质量。但是这里要比较的两者必须有同样的测量单位,如成本(元)。如果变量的单位不同,我们不能绝对地说那个变量更重要。不同单位的两个东西是不能绝对地比出高低轻重来。要想进行绝对地比较,就需要两个东西有着共同的测度单位,否则无法比较。

而标准化回归系数说的重要性则与上面的意义不同,这是一种相对的重要性,与某一特定的情况下,自变量间的离散程度有关。比如说,虽然我们不能绝对地说出教育和年资在决定收入上那一个一定是重要的,但如果现在大家的教育程度比较相似,那么在收入的决定上,工作年数就是决定因素;反之,如果工作年数没有太大区别,那么教育就成为了重要原因。这里的重要性是相对的,是根据不同情况而改变的。再举一个通俗的例子,研究者研究的是

遗传因素和后天因素对于人成长的影响。那么在一个社会境遇悬殊巨大的环境中,有人在贫民窟成长,有人在贵族学校上学,那么我们会发现人格的大部分差异会从后天环境因素得到解释,而遗传的作用就相对较小;相反,如果儿童都是在一个相差不大的环境中长大的,你会发现,遗传会解释大部分的人格差异。这种意义上的重要性,不仅与这一自变量的回归系数有关系,而且还与这个自变量的波动程度有关系:如果其波动程度较大,那么就会显得较为重要;否则,就显得不太重要。标准化回归系数正是测量这种重要性的。从标准化回归系数的公式中也可看出,Beta值是与自变量的标准差与成正比的,自变量波动程度的增加,会使它在这一具体情况下的重要性增加。

但是如果将两种重要性混同,就会得到误导性结论。如环境因素的Beta值比遗传因素的Beta值大,就认为在个体的人格发展上应更注意环境因素,而轻视遗传因素,在目前对于Beta值的错误观念非常流行,甚至是一些高手中。

标准化回归系数的比较结果只是适用于某一特定环境的,而不是绝对正确的,它可能因时因地而变化。举例来说,从某一次数据中得出,在影响人格形成的因素中,环境因素的Beta值比遗传因素的Beta值大,这只能说明数据采集当时当地的情况,而不能加以任何不恰当的推论,不能绝对地不加任何限定地说,环境因素的影响就是比遗传因素大。事实上,如果未来环境因素的波动程度变小,很可能遗传因素就显得更为重要。数据的情况千差万别,变量的相对重要性也可能完全不同但都符合当时的实际情况。

F是组方差值,

sig是差异性显著的检验值,该值一般与0.05或0.01比较,若小于0.05或者0.01 则表示差异显著 df是自由度

一般的sig 没有特别注明的都是指 双侧检验,如果特别注明有单侧,那就是单侧的 所谓双侧的意思是有可能在大于,有可能小于的, 而单侧的意思是只有一边或者大于,或者小于的

关于求法 还是看相关统计学教材吧 里面讲起来比较复杂

你的分析结果有T值,有sig值,说明你是在进行平均值的比较。也就是你在比较两组数据之间的平均值有没有差异。

从具有t值来看,你是在进行T检验。T检验是平均值的比较方法。 T检验分为三种方法:

1. 单一样本t检验(One-sample t test),是用来比较一组数据的平均值和一个数值有无差异。例如,你选取了5个人,测定了他们的身高,要看这五个人的身高平均值是否高于、低于还是等于1.70m,就需要用这个检验方法。

2. 配对样本t检验(paired-samples t test),是用来看一组样本在处理前后的平均值有无

线性回归方程中的相关系数r

SPSS中pearson(皮尔逊相关系数)看r值还是P值,确定相关性两个值都要看,r值表示在样本中变量间的相关系数,表示相关性的大小;p值是检验值,是检验两变量在样本来自的总体中是否存在和样本一样的相关性。SPSS回归系数SIG在SPSS软件统计结果中,不管是回归分析还是其它分析,都会看到“SIG”,SIG=significa
推荐度:
点击下载文档文档为doc格式
1qr8l9gc8u06i7l4fy11
领取福利

微信扫码领取福利

微信扫码分享