中考找规律专题复习
精品文档
教学内容 教学目标 教学重、难点 找规律 浅谈初中数学中的找规律题 最近两年,全国多数地市的中招考试都有找规律的题目,人们开始逐渐重视这一类数学题,研究发现数学规律题的解题思想,不但能够提高学生的考试成绩,而且更有助于创新型人才的培养。但究竟怎样才能把这种题目做好,是一个值得探究的问题,这类问题没有明确的知识方法可套,在现在的教科书上也很少触及这类问题。这类题目主要考查学生的综合分析问题和解决问题的能力。下面就解决这类问题作一个初步的探究。 一、代数中的规律 “有比较才有鉴别”。通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。 找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。揭示的规律,常常包含着事物的序列号。所以,把项数和项放在一起加以比较,就比较容易发现其中的奥秘。 例1 观察下列各式数:0,3,8,15,24,……。试按此规律写出第100个数是___。 分析:解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。 我们把有关的量放在一起加以比较: 项数:1 2 3 4 5 …… 项:0,3,8,15,24,……。 容易发现,已知数的每一项,都等于它的项数的平方减1。因此,第n 项是n2-1,第100项是1002-1。 收集于网络,如有侵权请联系管理员删除
精品文档
如果题目比较复杂,或者包含的变量比较多。解题的时候,不但考虑已知数的项数,还要考虑其他因素。 例2 (1)观察下列运算并填空 1×2×3×4+1=24+1=25=52 2×3×4×5+1=120+1=121=112 3×4×5×6+1=360+1=192 4×5×6×7+1= +1= = 2 7×8×9×10+1= +1= = 2 (2)根据(1)猜想(n+1)(n+2)(n+3)(n+4)+1=( )2 并用你所学的知识说明你的猜想。 分析:第(1)题是具体数据的计算,第(2)题在计算的基础上仔细观察。已知四个数乘积加上1的和与结果中完全平方数的数的关系是猜想的正确性的解释,只要用完全平方数四个数的首尾两数乘积与1的和正好是完全平方数的底数,由此探索其存在的规律,解决猜想公式逆用就可解决 解:(1)4×5×6×7+1=840+1=841=292 7×8×9×10+1=5040+1=5041=712 (2)(n+1)(n+2)(n+3)(n+4)+1 =[(n+1)(n+4)+1]2 =(n2+5n+1)2 例3. 观察下列算式: 31?3,32?9,33?27,34?81,3?243,3?729,3?2187,3?6561,…… 5678 用你所发现的规律写出32004的末位数字是__________。 例4.观察下列式子: 1?4?2?6?2?3; 2?5?2?12?3?4; 收集于网络,如有侵权请联系管理员删除
精品文档
3?6?2?20?4?5; 4?7?2?30?5?6…… 请你将猜想得到的式子用含正整数n的式子表示出来__________。 代数中的规律小结: 1、找到题目中的不变量 2、找到题目中的改变量,并认真观察改变量的变化规律 3、观察与猜想结合找到变量与不变量之间的关系 二、 平面图形中的规律 图形变化也是经常出现的,它的变化规律以代数规律为基础。作这种数学规律的题目,都会涉及到一个或者几个变化的量。所谓找规律,多数情况下,是指变量的变化规律。所以,抓住了变量,就等于抓住了解决问题的关键。 例1 用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板, 第n个图形中需要黑色瓷砖多少块?(用含n 的代数式表示). 分析:这一题的关键是求第n 个图形中需要几块黑色瓷砖? 在这三个图形中,前边4块黑瓷砖不变,变化的是后面的黑瓷砖。它们的数量分别是,第一个图形中多出0×3块黑瓷砖,第二个图形中多出1×3块黑瓷砖,第三个图形中多出2×3块黑瓷砖,依次类推,第n个图形中多出(n-1)×3块黑瓷砖。所以,第n个图形中一共有4+3(n-1)块黑瓷砖,也即(3n+1)块。 有些题目包含着事物的循环规律,找到了事物的循环规律,其他问题就可以迎刃而解。 收集于网络,如有侵权请联系管理员删除
精品文档
例4 “观察下列球的排列规律(其中●是实心球,○是空心球): ●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●…… 从第1个球起到第2004个球止,共有实心球多少个?”
分析:这些球,从左到右,按照固定的顺序排列,每隔10个球循环一次,循环节是●○○●●○○○○○。每个循环节里有3个实心球。我们只要知道 2004包含有多少个循环节,就容易计算出实心球的个数。因为2004÷10 =200(余4)。所以,2004个球里有200个循环节,还余4个球。200个循环节里有200×3=600个实心球,剩下的4个球里有2个实心球。所以,一共有602个实心球。
例5 平面内的一条直线可以将平面分成两个部分,两条直线最多可以将平面分成四个部分,三条直线最多可以将平面分成七个部分…
根据以上这些直线划分平面最初的具体的情况总结规律,探究十条直线最多可以将平面分成多少个部分。
分析:1条直线将平面分成2个部分
2条直线最多可以将平面分成4(=2+2)个部分 3条直线最多可以将平面分成7(=4+3)个部分 4条直线最多可以将平面分成11(=7+4)个部分
可以从中发现每增加1条直线,分平面的部分数就增加,其规律是若原有(n-1)条直线,现增加1条直线,最多将平面分成的平面数就增加n,平面上的10条直线最多将平面分成:2+2+3+4+5+6+7+8+9+10=56个部分。一般的平面上的n条中线最多可将平面分成(2+2+3+4+…+n)个部分。 三、空间图形中的规律
例6 如图,都是由边长为1的正方体叠成的图形。
收集于网络,如有侵权请联系管理员删除