一、初一数学有理数解答题压轴题精选(难)
1.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣4|=0;
(1)点A表示的数为________;点B表示的数为________;
(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒), ①当t=1时,甲小球到原点的距离=________;乙小球到原点的距离=________; 当t=3时,甲小球到原点的距离=________;乙小球到原点的距离=________;
②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.________ 【答案】 (1)-2 ;4
(2)3 ;2 ;5 ;2 ;能. 理由:
当0<t≤2时,t+2=4-2t 解之:解之:t=6 ∴当
【解析】【解答】解:(1)∵a、b满足|a+2|+|b﹣4|=0, ∴a+2=0且b-4=0 解之:a=-2且b=4,
∵在数轴上A点表示数a,B点表示数b, ∴点A表示的数是-2,点B表示的数是4. 故答案为:-2,4.
(2)当0<t≤2时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(4-2t)个单位长度;
当t>2时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(2t-4)个单位长
或6时,甲乙两小球到原点的距离相等.
当t>2时,t+2=2t-4
度;
①当t=1时,甲小球到原点的距离为:1+2=3;乙小球到原点的距离为4-2×1=2; 当t=3时,甲小球到原点的距离为:3+2=5;乙小球到原点的距离为2×3-4=2; 故答案为:3,2;5,2
【分析】(1)利用几个非负数之和为0,则每一个数都是0,建立关于a,b的方程组,解方程组求出a,b的值,就可得到点A,B所表示的数。
(2)①根据两个小球的运动方向及速度,可以分别用含t的代数式表示出当0<t≤2时,甲小球距离原点的距离和乙小球离原点的距离,当t>2时,甲小球距离原点的距离和乙小球离原点的距离,然后将t=1和t=3分别代入相关的代数式,即可求解;②利用(2)中的结论,分情况分别根据甲,乙两小球到原点的距离相等时经历的时间 ,建立关于t的方程,解方程求出t的值。
2.如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A、B是数轴上的点,请参照图并思考,完成下列各题.
(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是________,A、B两点间的距离是________;
(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是________,A、B两点间的距离为________;
(3)如果点A表示数﹣4,将A点向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示的数是________,A、B两点间的距离是________;
(4)一般地,如果A点表示的数为m , 将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示什么数?A、B两点间的距离为多少? 【答案】 (1)4;7 (2)1;2 (3)﹣13;9
(4)解:一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示m+n﹣p,A、B两点间的距离为|n﹣p|. 【解析】【解答】解:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是4,A、B两点间的距离是7;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是1,A、B两点间的距离为2;(3)如果点A表示数﹣4,将A点向右移动16个单位长度,再向左移动25个单位长度,那么终点B表示的数是﹣13,A、B两点间的距离是9;
【分析】(1)根据数轴上的点向右平移加,可得B点表示的数,根据数轴上两点间的距离是大数减小数,可得答案;(2)根据数轴上的点向右平移加,向左平移减,可得B点表示的数,根据数轴上两点间的距离是大数减小数,可得答案;(3)根据数轴上的点向右平移加,向左平移减,可得B点表示的数,根据数轴上两点间的距离是大数减小数,可得
答案;(4)根据数轴上的点向右平移加,向左平移减,可得B点表示的数,根据数轴上两点间的距离是大数减小数,可得答案;
3.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.
(1)当a=﹣2,b=6时,线段AB的中点对应的数是________;(直接填结果) (2)若该数轴上另有一点M对应着数m.
①当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值;
②当a=﹣2,且AM=3BM时,小安演算发现代数式3b﹣4m是一个定值. 老师点评:你的演算发现还不完整!
请通过演算解释:为什么“小安的演算发现”是不完整的? 【答案】 (1)2
(2)解:①当m=2,b>2时,点M在点A,B之间, ∵AM=2BM, ∴m﹣a=2(b﹣m), ∴2﹣a=2(b﹣2), ∴a+2b=6,
∴a+2b+20=6+20=26;
②小安只考虑了一种情况,故老师点评“小安的演算发现”是不完整的. 当点M在点A,B之间时,a=﹣2, ∵AM=3BM, ∴m+2=3(b﹣m), ∴m+2=3b﹣3m, ∴3b﹣4m=2,
∴代数式3b﹣4m是一个定值. 当点M在点B右侧时, ∵AM=3BM, ∴m+2=3(m﹣b), ∴m+2=3m﹣3b, ∴2m﹣3b=2,
∴代数式2m﹣3b也是一个定值.
【解析】【解答】解:(1)由题意得出,线段AB的中点对应的数是2, 故答案为:2.
【分析】(1)首先根据数轴的性质,即可得出中点对应的数值;(2)①首先判定点M在点A,B之间,然后根据等式列出关系式,即可得解;②根据题意,分两种情况进行求解:点M在点A,B之间和点M在点B右侧时,通过列出等式,即可判定.
4.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣2|+|c﹣3|=0.