. . 第1章 随机事件及其概率
nPm?m! 从m个人中挑出n个人进行排列的可能数。 (m?n)!m! 从m个人中挑出n个人进行组合的可能数。 n!(m?n)!(1)排列组合公式 nCm?加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可(2)加法和乘法原理 由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列 重复排列和非重复排列(有序) 对立事件(至少有一个) 顺序问题 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不(4)随机试验和随机事件 能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用?来表示。 (5)基本事件、样本空间和事件 基本事件的全体,称为试验的样本空间,用?表示。 一个事件就是由?中的部分点(基本事件?)组成的集合。通常用大写字母A,B,C,…表示事件,它们是?的子集。 为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 ①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):如果同时有?为必然事件,?A?B A?B,B?A,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A?B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者表示A发生而B不发生的事件。 AB,它A、B同时发生:A?B,或者AB。A?B=?,则表示A与B不可能同时发生,称事件A与事件B互不相(6)事件的关系与运算 容或者互斥。基本事件是互不相容的。 ?-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的事件。互斥未必对立。 ②运算: 结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C 分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC) 德摩根率:i?1?A??Aii?1??i A?B?A?B,A?B?A?B .. .. . . 设?为样本空间,A为事件,对每一个事件1° 0≤P(A)≤1, 2° P(Ω) =1 3° 对于两两互不相容的事件(7)概率的公理化定义 A都有一个实数P(A),若满足下列三个条件: A1,A2,…有 常称为可列(完全)可加性。 则称P(A)为事件????P???Ai????P(Ai)?i?1?i?1 A的概率。 ?1,?2??n?, 1° ???2° P(?1)?P(?2)??P(?n)?1。 n(8)古典概型 设任一事件A,它是由?1,?2??m组成的,则有 P(A)=?(?1)?(?2)???(?m)? =P(?1)?P(?2)???P(?m) ?mA所包含的基本事件数?n基本事件总数若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以(9)几何概型 使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A, P(A)?(10)加法公式 L(A)。其中L为几何度量(长度、面积、体积)。 L(?)P(A+B)=P(A)+P(B)-P(AB) 当P(AB)=0时,P(A+B)=P(A)+P(B) P(A-B)=P(A)-P(AB) 当B?A时,P(A-B)=P(A)-P(B) 当A=Ω时,P(B)=1- P(B) 定义 设A、B是两个事件,且P(A)>0,则称P(AB)为事件A发生条件下,事件B发生的条件概率,记为P(A)(11)减法公式 (12)条件概率 P(B/A)?P(AB)。 P(A)条件概率是概率的一种,所有概率的性质都适合于条件概率。 例如P(Ω/B)=1?P(B/A)=1-P(B/A) 乘法公式:P(AB)?P(A)P(B/A) (13)乘法公式 更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有 P(A1A2…An)?P(A1)P(A2|A1)P(A3|A1A2)……P(An|A1A2…An?1)。 ①两个事件的独立性 A、B满足P(AB)?P(A)P(B),则称事件A、B是相互独立的。 P(A)?0,则有 若事件A、B相互独立,且设事件P(B|A)?(14)独立性 若事件P(AB)P(A)P(B)??P(B)P(A)P(A) A、B相互独立,则可得到A与B、A与B、A与B也都相互独立。 必然事件?和不可能事件?与任何事件都相互独立。 ?与任何事件都互斥。 ②多个事件的独立性 设ABC是三个事件,如果满足两两独立的条件, P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) .. ..
. . 并且同时满足P(ABC)=P(A)P(B)P(C) 那么A、B、C相互独立。 对于n个事件类似。 设事件B1,B2,?,Bn满足 1°B1,B2,?,Bn两两互不相容,P(Bi)(15)全概公式 2°?0(i?1,2,?,n), A??Bii?1n, 则有 P(A)?P(B1)P(A|B1)?P(B2)P(A|B2)???P(Bn)P(A|Bn)。 设事件B1,B2,…,Bn及nA满足 1° B1,B2,…,Bn两两互不相容,P(Bi)>0,i2° (16)贝叶斯公式 ?1,2,…,n, A??Bii?1,P(A)n?0, 则 ,i=1,2,…n。 jP(Bi/A)?P(Bi)P(A/Bi)?P(B)P(A/B)jj?1此公式即为贝叶斯公式。 P(Bi),(i?1,2,…,n),通常叫先验概率。P(Bi/A),(i?1,2,…,n),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。 我们作了n次试验,且满足 ? ? 每次试验只有两种可能结果,A发生或A不发生; n次试验是重复进行的,即A发生的概率每次均一样; ? 每次试验是独立的,即每次试验A发生与否与其他次试验A发生与否是互不影响的。 这种试验称为伯努利概型,或称为n重伯努利试验。 (17)伯努利概型 用p表示每次试验A发生的概率,则A发生的概率为1?p?q,用Pn(k)表示n重伯努利试验中Ak?n)次的概率, k出现k(0?Pn(k)?Cnpkqn?k(1)离散型随机变量的分布律 ,k?0,1,2,?,n。 第二章 随机变量及其分布
设离散型随机变量X的可能取值为Xk(k=1,2,…)且取各个值的概率,即事件(X=Xk)的概率为 P(X=xk)=pk,k=1,2,…, 则称上式为离散型随机变量X的概率分布或分布律。有时也用分布列的形式给出: Xx1,x2,?,xk,?|P(X?xk)p1,p2,?,pk,?。 显然分布律应满足下列条件: (1)pk?0,k?1,2,?, (2)k?1?p?k?1。 .. ..