贷款总金额为A,月利率为R,贷款期限为N,每期需还款总额(包括本金和利息)为X。 第一期还款后,欠款总金额为??1
??1=A(1+R)?X
第二期还款后,欠款总金额为??2
??2=??1(1+R)?X =[A(1+R)?X](1+R)?X =A(1+R)2?X(1+R)?X =A(1+R)2?X[1+(1+R)]
第三期还款后,欠款总金额为??3 ??3 =??2(1+R)?X
={A(1+??)2?X[1+(1+R)]}(1+R)?X
=A(1+??)3?X[(1+R)+(1+??)2]?X
=A(1+??)3?X[1+(1+R)+(1+??)2]
由此可得,第k期还款后,欠款总金额为????
????=?????1(1+R)?X
=A(1+??)???X[1+(1+R)+(1+??)2+?+(1+??)???1]
1+(1+R)+(1+??)2+?+(1+??)???1为等比数列 ??1=1,公比q=(1+R) 等比数列求和公式: ????=代入值得 ????=继续
????=A(1+??)???X?????
=A(1+??)???X?
1?(1+??)??1?(1+??)
1?(1+??)??1?(1+??)
??1(1?????)1???
(q≠1)
设当第k期时,还款额为0,????=0, 即最后一期,贷款全部还完,则 A(1+??)???X?化简一下 X?
1?(1+??)??1?(1+??)
1?(1+??)??1?(1+??)=0
=X?
1?(1+??)??1?1???(1+??)???1
??
=X?
1?(1+??)??
???
=X?
(1+??)???1
??
A(1+??)??= X?
R(1+??)??
X=A?
(1+??)???1R(1+??)??
把k换成n,即:X=A?
(1+??)???1每月还款额=贷款金额×
月利率×(1+月利率)还款月数
(1+月利率)还款月数?1
每月还款利息=剩余本金×月利率 每月还款本金=每月还款额?每月还款利息