解(1)如图1,过点E作EG?BC于点G. 1分
∵E为AB的中点,
1∴BE?AB?2.
2在Rt△EBG中,∠B?60?,∴∠BEG?30?. ············ 2分
1∴BG?BE?1 ,EG?22?12?3.2即点E到BC的距离为3. ····································· 3分
A E B
D F C
图1
G
(2)①当点N在线段AD上运动时,△PMN的形状不发生改变. ∵PM?EF,EG?EF,∴PM∥EG. ∵EF∥BC,∴EP?GM,PM?EG?3.
同理MN?AB?4. ·················································································· 4分 如图2,过点P作PH?MN于H,∵MN∥AB, ∴∠NMC?∠B?60?,∠PMH?30?. N
A D ∴PH?13PM?. 22B
E P H F C
图2
3∴MH?PMg cos30??.235则NH?MN?MH?4??.
222G M ?5??3?22在Rt△PNH中,PN?NH?PH????? ?7.???22????∴△PMN的周长=PM?PN?MN?3?7?4. ······································· 6分 ②当点N在线段DC上运动时,△PMN的形状发生改变,但△MNC恒为等边三角形.
当PM?PN时,如图3,作PR?MN于R,则MR?NR.
23 .2∴MN?2MR?3 ··················································································· 7分 .∵△MNC是等边三角形,∴MC?MN?3.
此时,x?EP?GM?BC?BG?MC?6?1?3?2. ··································· 8分
类似①,MR?A E B
P R
G
M
图3
C
B
G
图4
M
D N F
A E P D F N C
B
A E D F(P) N C
G
图5
M
11 / 18
当MP?MN时,如图4,这时MC?MN?MP?3.
此时,x?EP?GM?6?1?3?5?3.
当NP?NM时,如图5,∠NPM?∠PMN?30?.
则∠PMN?120?,又∠MNC?60?, ∴∠PNM?∠MNC?180?.
因此点P与F重合,△PMC为直角三角形. ∴MC?PMg tan30??1.此时,x?EP?GM?6?1?1?4.
综上所述,当x?2或4或5?3时,△PMN为等腰三角形. ···················· 10分
??9如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4), 点C在第一象限.动点P在正方形 ABCD的边上,从点A出发沿A→B→C→D匀速运动,
同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,
设运动的时间为t秒.
(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标; (4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.
解:(1)Q(1,0) ······················································································· 1分 点P运动速度每秒钟1个单位长度. ·········································································································· 2分 (2) 过点B作BF⊥y轴于点F,BE⊥x轴于点E,则BF=8,OF?BE?4. ∴AF?10?4?6.
y 在Rt△AFB中,AB?82?62?10 3分 过点C作CG⊥x轴于点G,与FB的延长线交于点H. ∵?ABC?90?,AB?BC ∴△ABF≌△BCH.
DCAMFONQPHGx12 / 18
BE ∴BH?AF?6,CH?BF?8. ∴OG?FH?8?6?14,CG?8?4?12.
∴所求C点的坐标为(14,12). 4分 (3) 过点P作PM⊥y轴于点M,PN⊥x轴于点N, 则△APM∽△ABF. ∴
APAMMPtAMMP??. ??. ?ABAFBF10683434 ∴AM?t,PM?t. ∴PN?OM?10?t,ON?PM?t.
5555设△OPQ的面积为S(平方单位)
13473∴S??(10?t)(1?t)?5?t?t2(0≤t≤10) ················································· 5分
251010说明:未注明自变量的取值范围不扣分.
473<0 ∴当t??时, △OPQ的面积最大. ························· 6分 ?36102?(?)104710 ∵a?? 此时P的坐标为(
9453,) . ····································································· 7分 15105295(4) 当 t?或t?时, OP与PQ相等. ················································· 9分
313
10数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E
?AEF?90o,是边BC的中点.且EF交正方形外角?DCG的平行线CF于点F,
求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE?EF.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
A
D
F
B E C 图1
G
B
E C 图2 A
D
F G
B 图3
C E G
F A
D
13 / 18
解:(1)正确. (1分)
证明:在AB上取一点M,使AM?EC,连接ME. (2分)
D A
?BM?BE.??BME?45°,??AME?135°.
F M QCF是外角平分线,
??DCF?45°,
B E C G ??ECF?135°.
??AME??ECF.
Q?AEB??BAE?90°,?AEB??CEF?90°, ??BAE??CEF.
. ··································································· (5分) ?△AME≌△BCF(ASA)
························································································ (6分) ?AE?EF. ·
(2)正确. ····················································· (7分) 证明:在BA的延长线上取一点N. 使AN?CE,连接NE. ··································· (8分) N F ?BN?BE. D A ??N??PCE?45°. Q四边形ABCD是正方形, ?AD∥BE.
B C E G
??DAE??BEA. ??NAE??CEF.
. ································································· (10分) ?△ANE≌△ECF(ASA)
······················································································ (11分) ?AE?EF. ·
11已知一个直角三角形纸片OAB,其中?AOB?90°,OA?2,OB?4.如图,
将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.
(Ⅰ)若折叠后使点B与点A重合,求点C的坐标; y
B
x O A (Ⅱ)若折叠后点B落在边OA上的点为B?,设OB??x,OC?y,试写出y关于x的函数解析式,并确定y的取值范围;
B y x O A
(Ⅲ)若折叠后点B落在边OA上的点为B?,且使B?D∥OB,求此时点C的坐标. y
B 14 / 18
O A x 解(Ⅰ)如图①,折叠后点B与点A重合, 则△ACD≌△BCD.
设点C的坐标为?0,m??m?0?. 则BC?OB?OC?4?m. 于是AC?BC?4?m.
在Rt△AOC中,由勾股定理,得AC?OC?OA, 即?4?m??m2?22,解得m?22223. 2?3??点C的坐标为?0,?. ··················································································· 4分
2??(Ⅱ)如图②,折叠后点B落在OA边上的点为B?,
则△B?CD≌△BCD. 由题设OB??x,OC?y, 则B?C?BC?OB?OC?4?y,
在Rt△B?OC中,由勾股定理,得B?C?OC?OB?.
222??4?y??y2?x2,
12··························································································· 6分 x?2 ·
8由点B?在边OA上,有0≤x≤2,
1? 解析式y??x2?2?0≤x≤2?为所求.
8即y??2? Q当0≤x≤2时,y随x的增大而减小,
3···································································· 7分 ?y的取值范围为≤y≤2. ·
2(Ⅲ)如图③,折叠后点B落在OA边上的点为B??,且B??D∥OB. 则?OCB????CB??D. 又Q?CBD??CB??D,??OCB????CBD,有CB??∥BA. ?Rt△COB??∽Rt△BOA. OB??OC?有,得OC?2OB??. ·································································· 9分 OAOB在Rt△B??OC中,
设OB???x0?x?0?,则OC?2x0. 由(Ⅱ)的结论,得2x0??12x0?2, 8解得x0??8?45.Qx0?0,?x0??8?45. 15 / 18