det(L?)?det((D??L)?1)det((1??)D??U)?(1??)n,因此1???1,即:
0???2。
此结果表明要使SOR法收敛,松弛因子?必须在?0,2?中。那么,反过来,若选取?在?0,2?中,SOR法是否一定收敛呢?
定理6.3.15 (充分条件)若A为对称正定矩阵,且0???2,则解(6.3.12)的SOR法必收敛。
证明 若能证明在定理条件下,对L?的任一特征值?有:?1???1,则定理得证。事实上,设y为对应?的L?的特征向量。即:
?1(D??L)((1??)D??U)y??y。 L?y??y,y?(y1,y2,???yn)T?0,即
亦即:?(1??)D??U?y??(D??L)y,为找?的表达式,考虑内积:
???(1??)D??U?y,y?????(D??L)y,y?,则有:
??而:
?Dy,y????Dy,y????Uy,y? ?Dy,y????Ly,y?n2 ?Dy,y???aiiyi???0 (6.3.19)
i?1设??Ly,y????i?,由于A?AT则U?LT,从而:
-(Uy,y)??(y,Ly)??(Ly,y)???i?
0?(Ay,y)?((D?L?U)y,y)???2? (6.3.20)
因此:
?????????i??? ??(????)?i??从而:
2??????????2?2? (6.3.21) ??2222(????)???2当0???2由(6.3.20),(6.3.21)有:
????????????????2??????2?????2??0
从而由(6.3.21)可知??1,故SOR收敛。
151 / 18
6.4 关于回归模型的求解
在6.1的问题中,令,
?120400??1.18??125625??1.70??????130900??1.65?????13512251.55?????1401600??1.48???????0?1502500??1.40? ?=??? X?? Y??1603600??1.30??1????????2??16542251.26?????1704900??1.24??????1755625??1.21?????18064001.20???????1.18???1908100??则可以得到一个线性方程组:?XTX???XTY 令
64040100??12?17??,b?XTY??851?
A?XTX??64040100277900???????401002779000204702500???51162??用Gauss-Seidel迭代法:
1??k?1??k??k???17?640??40100?123?12?1?k?1??k????851?640x1?k?1??277900x3?2,k?0,1,240100???k?1?1?k?1???51162?40100?1?k?1??2779000x2?3204702500???????
??用MATLAB编写Gauss-Seidel迭代法的程序,经过5000次迭代得到结果如下:
?T?(2.19826629,?0.02252236,0.00012507)
所以二次回归模型为:y?2.19826629?0.02252236x?0.00012507x2。
习 题 6
1.取初始向量X(0)=(0,0,0)T,用雅可比迭代法求解线性方程组
152 / 18
?x???x???x?????x??x??x??? ??x??x?x??????2.用Gauss-Seidel迭代法解线性方程组:
?x1?5x2?x3?x4??1 ?x?2x?x?3x=3 ?1234 ? 3x?8x?x?x=1 234?1??x1?9x2?3x3?7x4=7 3.取??1.4,x(0)?(1,1,1)T,用SOR迭代法解线性方程组:
?1?2x1?x2???x1?2x2?x3?0 ??x?2x?1.823?
153 / 18
回归问题——线性方程组求解的迭代法



