好文档 - 专业文书写作范文服务资料分享网站

SLP设施物流规划毕业论文

天下 分享 时间: 加入收藏 我要投稿 点赞

四川大学本科毕业论文 基于SLP的Z公司自动化仓库布局改善

called Desert Storm a “logistician’s war,” handing much of the credit for the Coalition’s lightning-swift victory to his chief logistician, General Gus Pagonis. Pagonis, Schwarzkopf declared, was an “Einstein who could make anything happen,” and, in the Gulf War, did. Likewise, media pundits from NBC’s John Chancellor on down also attributed the successful result of the war to logistics.

1.5.2 Lessons Learned from the Gulf War 1.5.2.1 “Precision Guided” Logistics

In early attempts inside and outside of the Pentagon to assess the lessons learned from the Gulf War, attention has turned to such areas as the demonstrated quality of the joint operations, the extraordinary caliber of the fighting men and women, the incredible efficacy of heavy armor, the impact of Special Forces as part of joint operations on the battlefield, and the success of precision-guided weapons of all kinds. Predictably lost in the buzz over celebrating such successes was the emergence and near-seamless execution of what some have termed “precision-guided” logistics.

Perhaps, this is as it should be. Logistics in war, when truly working, should be transparent to those fighting. Logistics is not glamorous, but it is critical to military success. Logisticians and commanders need to know “what is where” as well as what is on the way and when they will have it. Such visibility, across the military services, should be given in military operations.

1.5.2.2 “Brute Force” Logistics

In 1991, the United States did not have the tools or the procedures to make it efficient. The Gulf War was really the epitome of “brute force” logistics. The notion of having asset visibility—in transit, from fac-tory to foxhole—was a dream. During the Gulf War, the Unites States did not have reliable information on almost anything. Materiel would enter the logistics pipeline based on fuzzy requirements, and then it could not be readily tracked in the system.

There were situations where supply sergeants up front were really working without a logistics plan to back up the war plan. They lacked the necessary priority flows to understand where and when things were moving. It was all done on the fly, on a daily basis, and the U.S. Central Command would decide, given the lift they had, what the priorities were. Although progress was eventually made, often whatever got into the aircraft first was what was loaded and shipped to the theater. It truly was brute force.

Even when air shipments were prioritized there was still no visibility. Although it is difficult to grasp today, consider a load being shipped and then a floppy disk mailed to the receiving unit in the theater. Whether that floppy disk got where it was going before the ship got there was in question. Ships were arriving without the recipients in the theater knowing what was on them. Generally speaking, if front-line commanders were not sure of what they had or when it would get there, they ordered more. There were not enough people to handle this flow, and, in the end, far more materiel was sent to the theater than was needed. This was definitely an example of “just-in-case” logis-tics. When the war ended, the logistics pipeline was so highly spiked that there were still 101 munitions ships on the high seas. Again, it was brute-force logistics.

The result was the off-referenced “iron mountains” of shipping containers. There was too much, and, worse yet, little, if any, knowledge of what was where. This led, inevitably, to being forced to open some-thing like two-thirds of all of the containers simply to see what was inside.

8

四川大学本科毕业论文 基于SLP的Z公司自动化仓库布局改善

Imagine the difficulty in finding things if you shipped your household goods to your new house using identical unmarked boxes. Since there were a great number of individual users, imagine that the household goods of all of your neighbors also were arriving at your new address, and in the same identical boxes.

That there was this brute force dilemma in the Gulf War was no secret. There just wasn’t any other way around it. The technology used was the best available. Desert Storm was conducted using 286-processor technology with very slow transfer rates, without the Internet, without the Web, and without encrypted satellite information. Telexes and faxes represented the available communication technology.

1.5.2.3 “Flying Blind” Logistics

This was an era of green computer screens, when it took 18 keystrokes just to get to the main screen. When the right screen was brought up, the data were missing or highly suspect (i.e., “not actionable”). In contrast to today, there were no data coming in from networked databases, and there was no software to reconcile things. There were also no radio frequency identification tags. In effect, this was like “flying blind.”

In fact, nothing shipped was tagged. Every shipment basically had a Government bill of lading attached to it, or there were five or six different items that together had one bill of lading. When those items inevitably got separated, the materiel was essentially lost from the system. Faced with this logistics nightmare, and knowing that there was often a critical need to get particular things to a particular place at a particular time, workarounds were developed.

As a result of our experience in the Gulf War, the Department of Defense (DOD) has subsequently been refining its technologies and testing them through military joint exercises and deployments and contingencies in such places as Bosnia, Kosovo, and Rwanda. Specifically, the DOD has focused on the issue of logistics management and tracking and on how technology can enable improvements in this mission critical area. The DOD has improved its logistics management and tracking through policy directives and by engaging with innovative technology companies in the development and leveraging of technical solutions.

The DOD now has clear knowledge of when things are actually moving—the planes, the ships, what is going to be on them, and what needs to be moved. Communication is now digital and that represents a quantum leap in capability and efficiency from the first war in Iraq. Operators now get accurate information, instantaneously, and where needed. The technology exists to absorb, manage, and precisely guide materiel.

1.5.3 Applying Lessons Learned from the Gulf War 1.5.3.1 Operation Enduring Freedom

While troops raced toward Baghdad in the spring of 2003, digital maps hanging from a wall inside the Joint Mobility Operations Center at Scott Air Force Base, Ill, blinked updates every four minutes to show the path cargo planes and ships were taking to the Middle East. During the height of the war in Iraq, every one of the military’s 450 daily cargo flights and more than 120 cargo ships at sea were tracked on the screen, as was everything stowed aboard them—from Joint Direct Attack Munitions to meals for soldiers.

In rows of cubicles beneath the digital displays, dozens of military and civilian workers from the U.S. Transportation Command (TRANSCOM) looked at the same maps on their

9

四川大学本科毕业论文 基于SLP的Z公司自动化仓库布局改善

computer screens. The maps, along with an extensive database with details on more than five million items and troops in transit, came in handy as telephone calls and e-mail queries poured in from logisticians at ports and airfields in the Persian Gulf: How soon would a spare part arrive? When would the next shipment of meals arrive? When was the next batch of troops due? With just a few mouse clicks, TRANSCOM workers not only could report where a ship or plane was and when it was due to arrive, but also could determine which pallet or shipping container carried what. In many cases, logisticians in the field also could go online, pull up the map and data and answer their own questions.

Vice Admiral Keith Lippert, director of the Defense Logistics Agency (DLA) says the war in Iraq vali-dated a new business model that moves away from “stuffing items in warehouses” to relying on technol-ogy and contractors to provide inventory as needed. The agency, which operates separately from TRANSCOM, is responsible for ordering, stocking, and shipping supplies shared across the services. In addition, the Army, Navy, Air Force, and Marines have their own supply operations to ship items unique to each service. The DLA supplied several billion dollars worth of spare parts, pharmaceuticals, clothing and 72 million ready-to-eat meals to troops during the war.

Military logisticians have won high marks for quickly assembling the forces and supplies needed in Iraq. Advances in logistics tracking technology, investments in a new fleet of cargo airplanes and larger ships, and the prepositioning of military equipment in the region allowed troops to move halfway around the world with unprecedented speed. Troops were not digging through containers looking for supplies they had ordered weeks earlier, nor were they placing double and triple orders in hopes that one of their requests would be acted upon, as they did during the Gulf War in 1991. While the military transportation and distribution system may never be as fast or efficient as FedEx or UPS, its reliability has increased over the past decade.

Nonetheless, challenges remain. Several changes to the way troops and supplies are sent to war are under consideration, including:

? Further improvement of logistics information technology systems ? Development of a faster way to plan troop deployments ? Consolidated management of the Defense supply chain

While TRANSCOM has gotten positive reviews for moving troops and supplies to the Middle East, concerns have been raised about how the services moved supplies after they arrived in the field.

Perhaps the most valuable logistics investment during the war was not in expensive cargo aircraft or advanced tracking systems, but in thousands of plastic radio frequency identification labels that cost $150 apiece. The tags, which measure eight inches long by about two inches wide, contain memory chips full of information about when a shipment departed, when it is scheduled to arrive and what it contains. They are equipped with small radio transponders that broadcast information about the cargo’s status as it moves around the world. The tags enable the Global Transportation Network to almost immediately update logistics planners on the location of items in the supply chain.

These tags were a key factor in avoiding the equipment pileups in warehouses and at desert outposts that came to symbolize logistics failings during the first Gulf War. The tags also saved hundreds of mil-lions of dollars in shipping costs, logisticians say. For example, British soldiers spent almost a full day of the war searching cargo containers for $3 million in gear needed to

10

四川大学本科毕业论文 基于SLP的Z公司自动化仓库布局改善

repair vehicles. Just as they were about to place a second order for the gear, a U.S. logistician tapped into a logistics tracking system and was able to locate the supplies in the American supply network.

Rapid response to shifting requirements is clearly the fundamental challenge facing all logisticians, as relevant in the commercial sector as it is in the military environment. The commercial logistician requires the same thing that the combatant commander requires: situational awareness. We all need an in-depth, real-time knowledge of the location and disposition of assets.

Indeed, Wal-Mart, arguably the channel master for the world’s largest, most globally integrated com-mercial supply chain, has embarked on a passive RFID initiative that is very similar to the Department of Defense’s plans. The retailer mandated that suppliers tag inbound materiel with passive RFID tags beginning at the case and pallet level. Wal-Mart established a self-imposed January 2005 deadline to RFID-enable its North Texas operation, along with 100 of its suppliers. The first full-scale operational test began on April 30, 2005. Based on the success of this initial test Wal-Mart expanded its supplier scope and deployment plan for RFID and by early 2007 reported that some 600 suppliers were RFID-enabled.

While there have been some solid successes early on, there are now many suppliers (in particular the smaller ones) that are dragging their feet on RFID adoption due to an elusive return on investment (ROI). Current generation RFID tags cost about 15 cents, while bar codes cost a fraction of a cent. Suppliers have also had to absorb the cost of buying hardware—readers, transponders, antennas—and software to track and analyze the data. The tags also have increased labor. Bar codes are printed on cases at the factory, but because most manufacturers have yet to adopt RFID, tags have to be put on by hand at the warehouse. The retail giant also experienced difficulties rolling out RFID in their distribution network. Wal-Mart had hoped to have up to 12 of its roughly 137 distribution centers using RFID technology by the end of 2006, but had installed the technology at just five. Now Wal-Mart has shifted gears from their distribution centers to their stores where they believe they will be better able to drive sales for their suppliers and to get product on the shelf, where it needs to be for their customers to buy. By early 2007 there were roughly 1000 stores RFID-enabled with another 400 stores planned by the end of the year.

Regardless of where Wal-Mart places their priorities, with this retail giant leading the charge, and driving industry compliance, it is expected that this initiative will have a greater, and more far-reaching, impact on just the retail supply chain. Virtually every industry, in every corner of the planet, will be fundamentally impacted sometime in the not-too-distant future. Clearly the lessons learned in military logistics are being applied to business logistics and as a result engineering logistics.

11

SLP设施物流规划毕业论文

四川大学本科毕业论文基于SLP的Z公司自动化仓库布局改善calledDesertStorma“logistician’swar,”handingmuchofthecreditfortheCoalition’slightning-swiftvictorytohischief
推荐度:
点击下载文档文档为doc格式
1kwxy9hvwu072ie1yi364bptb11wxs00mc3
领取福利

微信扫码领取福利

微信扫码分享