最新人教版八年级数学上下册各单元及期末测试题(含答案)
人教版八年级数学上册第一单元测试
一、选择题(24分)
1.用尺规作已知角的平分线的理论依据是( )
A.SAS B.AAS C.SSS D.ASA 2.三角形中到三边距离相等的点是( )
A.三条边的垂直平分线的交点 B.三条高的交点
C.三条中线的交点 D.三条角平分线的交点
3. 已知△ABC≌△A′B′C′,且△ABC的周长为20,AB=8,BC=5,则A′C′等于( ) A. 5 B. 6 C. 7 D. 8
4.如图所示,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为( ) A. 15° B. 20° C. 25° D. 30°
A E M C
A
D FE
N BCB DF
4题图 5题图 6题图
5.如图,在Rt△AEB和Rt△AFC中,BE与AC相交于点M,与CF相交于点D,AB与CF相交于点N,∠E=∠F=90°,
∠EAC=∠FAB,AE=AF.给出下列结论:①∠B=∠C;②CD=DN;③BE=CF;④△CAN≌△ABM.其中正确的结论是( ) A.①③④
B.②③④
C.①②③
D.①②④
6.如图,△ABC中,AB=AC,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,有下面四个结论:①DA平分∠EDF;②AE=AF;③AD上的点到B,C两点的距离相等;④到AE,AF的距离相等的点到DE,DF的距离也相等.其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个 7.已知AD是△ABC的角平分线,DE⊥AB于E,且DE=3cm,则点D到AC的距 离是( )
A.2cm B.3cm C.4cm D.6cm
8.下列说法:①角的内部任意一点到角的两边的距离相等;?②到角的两边 距离相等的点在这个角的平分线上;③角的平分线上任意一点到角的两边 的距离相等;④△ABC中∠BAC的平分线上任意一点到三角形的三边的距离 相等,其中正确的( )
A.1个 B.2个 C.3个 D.4个
二、填空题(30分)
2
9.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是28 cm,AB=20cm,AC=8cm,则DE的长为_________ cm.
10. 已知△ABC≌△DEF,AB=DE,BC=EF,则AC的对应边是__________,∠ACB的对应角是__________.
11. 如图所示,把△ABC沿直线BC翻折180°到△DBC,那么△ABC和△DBC______全等图形(填“是”或“不是”);若△ABC的面积为2,那么△BDC的面积为__________.
12. 如图所示,△ABE≌△ACD,∠B=70°,∠AEB=75°,则∠CAE=__________°.
A
1
E F
9题图 11题图 12题图
13. 如图所示,△AOB≌△COD,∠AOB=∠COD,∠A=∠C,则∠D的对应角是__________,图中相等的线段有__________.
13题图 14题图 15题图
14. 如图所示,已知△ABC≌△DEF,AB=4cm,BC=6cm,AC=5cm,CF=2cm,∠A=70°,∠B=65°,则∠D=__________,∠F=__________,DE=__________,BE=__________.
15.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是__________(只要求写一个条件).
16. 已知:△ABC中,∠B=90°, ∠A、∠C的平分线交于点O,则∠AOC的度数为 . 17.如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,则∠DOC=_________.
18.如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3 cm,BD=5 cm,则BC=_____cm.
17题图
18题图
三、解答题
19.(6分)已知:如图,∠1=∠2,∠C=∠D,求证:AC=AD.
C
A12B 2
D20.(8分)如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4. 求证:(1)△ABC≌△ADC;(2)BO=DO.
B
3 1 A C 2 O 4
D
21.(8分)如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,AD=BD.
(1)求证:AC =BE;(2)求∠B的度数。 C D
22.(10分)如图,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若BD=CD.求证:AD平分∠BAC.
A
E B
23.(10分)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.
(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC⊥BE.
D
A B
3
C 图2
E
图1