好文档 - 专业文书写作范文服务资料分享网站

《信号与系统》学习笔记

天下 分享 时间: 加入收藏 我要投稿 点赞

学习笔记(信号与系统)

第一章 信号和系统

信号的概念、描述和分类 信号的基本运算 典型信号

系统的概念和分类

1、常常把来自外界的各种报道统称为消息; 信息是消息中有意义的内容;

信号是反映信息的各种物理量,是系统直接进行加工、变换以实现通信的对象。

信号是信息的表现形式,信息是信号的具体内容;信号是信息的载体,通过信号传递信息。

2、系统(system):是指若干相互关联的事物组合而成具有特定功能的整体。

3、信号的描述——数学描述,波形描述。 信号的分类:

1)确定信号(规则信号)和随机信号

确定信号或规则信号 ——可以用确定时间函数表示的信号;随机信号——

若信号不能用确切的函数描述,它在任意时刻的取值都具有不确定性,只可能知道它的统计特性。

2)连续信号和离散信号

连续时间信号——在连续的时间范围内(-∞

3)周期信号和非周期信号

周期信号——是指一个每隔一定时间T,按相同规律重复变化的信号;非周期信号——不具有周期性的信号称为非周期信号。

4)能量信号与功率信号

能量信号——信号总能量为有限值而信号平均功率为零;功率信号——平均功率为有限值而信号总能量为无限大。

5)一维信号与多维信号

信号可以表示为一个或多个变量的函数,称为一维或多维函数。 6)因果信号

若当t<0时f(t)=0,当t>0时f(t)≠0的信号,称为因果信号;非因果信号指的是在时间零点之前有非零值。

4、信号的基本运算:

信号的+、-、×运算:两信号f1(·)和f2(·)的相+、-、×指同一时刻两信号之值对应相加减乘。

平移:将f(t)→f(t + t0)称为对信号f(·)的平移或移位,若t0< 0,则将f(·)右移,否则左移。

反转: 将f(t)→f(–t)或f(k)→f(–k)称为对信号f(·)的反转或反折,从图形上看是将f (·)以纵坐标为轴反转180°。

尺度变换(横坐标展缩):将f(t)→f(at),称为对信号f(t)的尺度变换。若a>1,则f(at)将f(t)的波形沿时间轴压缩至原来的1/a;若0

微分:信号f(t)的微分运算指f(t)对t取导数,即:

信号经过微分运算后突出显示了它的变化部分,起到了锐化的作用。 积分:信号f(t)的积分运算指f(t)在(-∞,t)区间内的定积分,表达式为:

信号经过积分运算后,使得信号突出变化部分变得平滑了,起到了模糊的作用,利用积分可以削弱信号中噪声的影响。

5、典型的连续时间信号

1)实指数信号:(对时间的微、积分仍是指数。)

a>0时,信号将随时间而增长;a<0时,信号将随时间而衰减;a=0时,信号不随时间而变化,为直流信号。

τ是指数信号的时间常数,τ越大,指数信号增长或衰减的速率越慢。 2)正弦信号:

对时间的微、积分仍是同频率正弦。 3)复指数信号:

实际不存在,但可以用于描述各种信号。

σ>0时,增幅振荡正、余弦信号;σ<0时,衰减振荡正、余弦信号;σ=0时等振幅振荡正、余弦信号;ω=0时,实指数信号;σ=0且ω=0时,直流信号。

4)抽样信号:Sa(t)具有以下性质:=0(t=±π,±2π,…)。

5)钟形信号:

6、单位阶跃函数和单位冲激函数

;Sa(0)=1,Sa(t)

1)单位阶跃函数:

可以方便地表示某些信号,用阶跃函数表示信号的作用区间,积分计算;

1单位冲激函数为偶函数:○

2加权特性:○

3抽样特性:○,,

4尺度变换:○

5导数(冲激偶)○:

特。

:

冲激偶的抽样特性:冲

2)单位冲激函数:

单位冲激函数是个奇异函数,它是对强度极大,作用时间极短一种物理量的理想化模型。

3)冲激函数与阶跃函数关系:

阶跃函数序列与冲激函数序列。

7、信号的分解

直流分量fD与交流分量fA(t):平均值。

偶分量与奇分量:fo=

为奇分量。

脉冲分量

一种分解为矩形窄脉冲分量:

,其中fe=

为偶分量,

,其中fD为直流分量即信号的

《信号与系统》学习笔记

学习笔记(信号与系统)第一章信号和系统信号的概念、描述和分类信号的基本运算典型信号系统的概念和分类1、常常把来自外界的各种报道统称为消息;信息是消息中有意义的内容;信号是反映信息的各种物理量,是系统直接进行加工、变换以实现通信的对象。信号是信息的表现形式,信息是信号的具体
推荐度:
点击下载文档文档为doc格式
1khkj2p82479ew80o94h77xpo5846y00qyx
领取福利

微信扫码领取福利

微信扫码分享