Fig. 20 Spectra of the main elements of the drain-source voltage
图20 漏源极电压主要原理产生的电磁干扰频谱
This method allows associating certain parts of the spectrum with their root causes, i.e. the peak at 20 MHz in the spectrum of the drain-source voltage is caused by the parasitic oscillation due to the output capacitance of the MOSFET and the leakage inductance of the transformer.
这种方法可以确定电磁干扰频谱中某些频点的来源,也就是说漏源极电压产生的电磁干扰频谱中的20兆赫兹峰点是钳位过程结束后主要由场效应晶体管输出电容和变压器漏感引起的寄生振荡产生的。
The analysis of the drain current of the primary switch will be done in the same way. Fig. 21 demonstrates a typical drain current in a DCM flyback.
对一次侧开关的漏极电流进行分析采用相同的方法。图21展示出一个工作于电感电流断续模式反激变换器的典型漏极电流。
Fig. 21 Typical drain current in a flyback 图21 反激变换器的典型漏极电流
This waveform can be presented as a superposition of the following elements (Fig. 22 and Tab. 5). The superposition of all these elements results in a typical drain current shown in Fig. 21. 这个波形可以被看作是下列原理的叠加(图22和平台5)。全部这些波形的叠加整合结果变成图21所示的典型漏极电流。
Fig. 22 Main elements of the drain current
图22 漏极电流的主要原理
原理1:漏极电流的主要三角波形
原理2:在开关开通期间因寄生分布电容引起的电流尖刺
原理3:钳位过程结束后主要由场效应晶体管输出电容和变
压器漏感引起的寄生振荡
反激典型波形



