好文档 - 专业文书写作范文服务资料分享网站

《概率论与数理统计》浙江大学第四版课后习题答案-概率论第四版 

天下 分享 时间: 加入收藏 我要投稿 点赞

P(A1)?4?3?26 ?31642?4?3种。 对A2:必须三球放入两杯,一杯装一球,一杯装两球。放法有C32(从3个球中选2个球,选法有C3,再将此两个球放入一个杯中,选法有4

种,最后将剩余的1球放入其余的一个杯中,选法有3种。

2C3?4?3P(A2)?43?9 16对A3:必须三球都放入一杯中。放法有4种。(只需从4个杯中选1个杯子,放入此

3个球,选法有4种)

P(A3)?41 ?316416.[十二] 50个铆钉随机地取来用在10个部件,其中有三个铆钉强度太弱,每个部

件用3只铆钉,若将三只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱,问发生一个部件强度太弱的概率是多少?

记A表“10个部件中有一个部件强度太弱”。 法一:用古典概率作:

把随机试验E看作是用三个钉一组,三个钉一组去铆完10个部件(在三个钉的一组中不分先后次序。但10组钉铆完10个部件要分先后次序)

3333?C47?C44???C23对E:铆法有C50种,每种装法等可能

3333?C47?C44??C23对A:三个次钉必须铆在一个部件上。这种铆法有〔C3〕×10

3333[C3?C47?C44???C23]?10333C50?C47????C23P(A)??1?0.00051 1960法二:用古典概率作

把试验E看作是在50个钉中任选30个钉排成一列,顺次钉下去,直到把部件铆完。(铆钉要计先后次序)

6

3

对E:铆法有A50种,每种铆法等可能

对A:三支次钉必须铆在“1,2,3”位置上或“4,5,6”位置上,…或“28,29,

327327327327?A47?A3?A47????A3?A47?10?A3?A4730”位置上。这种铆法有A3种

P(A)?32710?A3?A4730A50?1?0.00051 196017.[十三] 已知P(A)?0.3,P(B)?0.4,P(AB)?0.5,求P(B|A?B)。 解一:

P(A)?1?P(A)?0.7,P(B)?1?P(B)?0.6,A?AS?A(B?B)?AB?AB注意(AB)(AB)??. 故有

P (AB)=P (A)-P (AB)=0.7-0.5=0.2。 再由加法定理,

P (A∪B)= P (A)+ P (B)-P (AB)=0.7+0.6-0.5=0.8 于是P(B|A?B)?P[B(A?B)]P(AB)0.2???0.25

P(A?B)P(A?B)0.8解二:P(AB)?P(A)P(B|A)?由已知???05?07?P(B|A)?P(B|A)?0.5521??P(B|A)? 故 P(AB)?P(A)P(B|A)?0.77751P(BA?BB)P(BA)5P(B|A?B)定义???0.25P(A?B)P(A)?P(B)?P(AB)0.7?0.6?0.5

18.[十四] P(A)?111,P(B|A)?,P(A|B)?,求P(A?B)。 43211?定义P(AB)P(A)P(B|A)由已知条件143?P(B)?1 ???????有?解:由P(A|B)P(B)P(B)2P(B)6

7

由乘法公式,得P(AB)?P(A)P(B|A)?1 121111??? 46123由加法公式,得P(A?B)?P(A)?P(B)?P(AB)?19.[十五] 掷两颗骰子,已知两颗骰子点数之和为7,求其中有一颗为1点的概率(用两种方法)。

解:(方法一)(在缩小的样本空间SB中求P(A|B),即将事件B作为样本空间,求事件A发生的概率)。

掷两颗骰子的试验结果为一有序数组(x, y)(x, y=1,2,3,4,5,6)并且满足x,+y=7,则样本空间为

S={(x, y)| (1, 6 ), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3)} 每种结果(x, y)等可能。

A={掷二骰子,点数和为7时,其中有一颗为1点。故P(A)?21?} 63方法二:(用公式P(A|B)?P(AB) P(B)S={(x, y)| x =1,2,3,4,5,6; y = 1,2,3,4,5,6}}每种结果均可能

A=“掷两颗骰子,x, y中有一个为“1”点”,B=“掷两颗骰子,x,+y=7”。则

P(B)?612, ?,P(AB)?2266622P(AB)21?6?? 故P(A|B)?P(B)163620.[十六] 据以往资料表明,某一3口之家,患某种传染病的概率有以下规律:P(A)=P{孩子得病}=0.6,P (B|A)=P{母亲得病|孩子得病}=0.5,P (C|AB)=P{父亲得病|母亲及孩子得病}=0.4。求母亲及孩子得病但父亲未得病的概率。

解:所求概率为P (ABC)(注意:由于“母病”,“孩病”,“父病”都是随机事件,这里不是求P (C|AB)

8

P (AB)= P(A)=P(B|A)=0.6×0.5=0.3, P (C|AB)=1-P (C |AB)=1-0.4=0.6. 从而P (ABC)= P (AB) · P(C|AB)=0.3×0.6=0.18.

21.[十七] 已知10只晶体管中有2只次品,在其中取二次,每次随机地取一只,作不放回抽样,求下列事件的概率。

(1)二只都是正品(记为事件A)

法一:用组合做 在10只中任取两只来组合,每一个组合看作一个基本结果,每种取法等可能。

C8228P(A)?2??0.62

C1045法二:用排列做 在10只中任取两个来排列,每一个排列看作一个基本结果,每个排列等可能。

2A82A10P(A)?

?28 45法三:用事件的运算和概率计算法则来作。 记A1,A2分别表第一、二次取得正品。

P(A)?P(A1A2)?P(A)P(A2|A1)?(2)二只都是次品(记为事件B)

2C22C108728 ??10945法一:

P(B)??1 45法二:

P(B)?2A22A10?1 45211?? 10945法三:

P(B)?P(A1A2)?P(A1)P(A2|A1)?(3)一只是正品,一只是次品(记为事件C)

9

11C8?C22C10法一:

P(C)??16 45法二: P(C)?112(C8?C2)?A22A10?16 45法三:

P(C)?P(A1A2?A1A2)且A1A2与A1A2互斥

?P(A1)P(A2|A1)?P(A1)P(A2|A1)?281682 ???10910945(4)第二次取出的是次品(记为事件D)

法一:因为要注意第一、第二次的顺序。不能用组合作,

11A9?A22A10法二:

P(D)??1 5法三:

P(D)?P(A1A2?A1A2)且A1A2与A1A2互斥

?P(A1)P(A2|A1)?P(A1)P(A2|A1)?82211???? 109109522.[十八] 某人忘记了电话号码的最后一个数字,因而随机的拨号,求他拨号不超过三次而接通所需的电话的概率是多少?如果已知最后一个数字是奇数,那么此概率是多少?

记H表拨号不超过三次而能接通。 Ai表第i次拨号能接通。

注意:第一次拨号不通,第二拨号就不再拨这个号码。

??H?A1?A1A2?A1A2A3 三种情况互斥P(H)?P(A1)?P(A1)P(A2|A1)?P(A1)P(A2|A1)P(A3|A1A2)

?1919813??????10109109810如果已知最后一个数字是奇数(记为事件B)问题变为在B已发生的条件下,求H

10

《概率论与数理统计》浙江大学第四版课后习题答案-概率论第四版 

P(A1)?4?3?26?31642?4?3种。对A2:必须三球放入两杯,一杯装一球,一杯装两球。放法有C32(从3个球中选2个球,选法有C3,再将此两个球放入一个杯中,选法有4种,最后将剩余的1球放入其余的一个杯中,选法有3种。2C3?4?3P(A2)?43?916对A3:必须三球都放入一杯中。放法有4种。(只需从4个杯中选1个杯子,放入
推荐度:
点击下载文档文档为doc格式
1k21f292ai6gjog0oh073pit886asl004vk
领取福利

微信扫码领取福利

微信扫码分享