好文档 - 专业文书写作范文服务资料分享网站

初中数学几何的动点问题专题练习 - 图文

天下 分享 时间: 加入收藏 我要投稿 点赞

初中数学辅导网 http://www.shuxuefudao.cn

解(1)如图1,过点E作EG?BC于点G. ··························· 1分

∵E为AB的中点,

1∴BE?AB?2.

2在Rt△EBG中,∠B?60?,∴∠BEG?30?. ·············· 2分

122∴BG?BE?1,EG?2?1?3.

2即点E到BC的距离为3.··············································· 3分

A E B

D F C

图1

G

(2)①当点N在线段AD上运动时,△PMN的形状不发生改变. ∵PM?EF,EG?EF,∴PM∥EG. ∵EF∥BC,∴EP?GM,PM?EG?3.

同理MN?AB?4. ······································································································· 4分 如图2,过点P作PH?MN于H,∵MN∥AB, ∴∠NMC?∠B?60?,∠PMH?30?. N

A D ∴PH?13 PM?.22B

E P H F C

图2

3cos30??.∴MH?PM?

235则NH?MN?MH?4??.

222G M ?5??3?22Rt△PNH在中,PN?NH?PH????? ?7.???22????∴△PMN的周长=PM?PN?MN?3?7?4. ················································· 6分 ②当点N在线段DC上运动时,△PMN的形状发生改变,但△MNC恒为等边三角

形.

当PM?PN时,如图3,作PR?MN于R,则MR?NR.

23. 2∴MN?2MR?3. ········································································································· 7分 ∵△MNC是等边三角形,∴MC?MN?3.

此时,x?EP?GM?BC?BG?MC?6?1?3?2. ············································· 8分

类似①,MR?A E B

P R

G

M

图3

C

B

G

图4

京翰教育1对1家教 http://www.zgjhjy.com/

D N F

A E P

D F N C

B

A E D F(P) N C

M G

图5

M

初中数学辅导网 http://www.shuxuefudao.cn

当MP?MN时,如图4,这时MC?MN?MP?3.

此时,x?EP?GM?6?1?3?5?3.

当NP?NM时,如图5,∠NPM?∠PMN?30?.

则∠PMN?120?,又∠MNC?60?, ∴∠PNM?∠MNC?180?.

因此点P与F重合,△PMC为直角三角形.

.∴MC?PM?tan30??1

此时,x?EP?GM?6?1?1?4.

综上所述,当x?2或4或5?3时,△PMN为等腰三角形. ·························· 10分

??9(09兰州)如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4), 点C在第一象限.动点P在正方形 ABCD的边上,从点A出发沿A→B→C→D匀速运动,

同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,

设运动的时间为t秒.

(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;

(2)求正方形边长及顶点C的坐标;

(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标; (4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.

解:(1)Q(1,0) ·············································································································· 1分 点P运动速度每秒钟1个单位长度. ····································································································································· 2分 (2) 过点B作BF⊥y轴于点F,BE⊥x轴于点E,则BF=8,OF?BE?4. ∴AF?10?4?6.

y 在Rt△AFB中,AB?82?62?10 3分 过点C作CG⊥x轴于点G,与FB的延长线交于点H. ∵?ABC?90?,AB?BC ∴△ABF≌△BCH.

DCAMFONQPHGx京翰教育1对1家教 http://www.zgjhjy.com/

BE初中数学辅导网 http://www.shuxuefudao.cn

∴BH?AF?6,CH?BF?8. ∴OG?FH?8?6?14,CG?8?4?12.

∴所求C点的坐标为(14,12). 4分 (3) 过点P作PM⊥y轴于点M,PN⊥x轴于点N, 则△APM∽△ABF. ∴

APAMMPtAMMP. ?. ????ABAFBF10683434 ∴AM?t,PM?t. ∴PN?OM?10?t,ON?PM?t.

5555设△OPQ的面积为S(平方单位)

13473∴S??(10?t)(1?t)?5?t?t2(0≤t≤10) ······························································ 5分

251010说明:未注明自变量的取值范围不扣分.

473<0 ∴当t??时, △OPQ的面积最大. ································ 6分 ?36102?(?)104710 ∵a?? 此时P的坐标为(

9453,) . ························································································ 7分 15105295(4) 当 t?或t?时, OP与PQ相等. ······························································ 9分

31310(09临沂)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.?AEF?90?,且EF交正方形外角?DCG的平行线CF于点F,求证:AE=EF.

经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE?EF.

在此基础上,同学们作了进一步的研究:

(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;

(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.

A

D

F

B E C 图1

G

B

E C 图2 A

D

F G

B 图3

C E G

F A

D

京翰教育1对1家教 http://www.zgjhjy.com/

初中数学辅导网 http://www.shuxuefudao.cn

解:(1)正确. ·································································· (1分) 证明:在AB上取一点M,使AM?EC,连接ME. (2分)

D A

?BM?BE.??BME?45°,??AME?135°.

F M ?CF是外角平分线,

??DCF?45°,

B E C G ??ECF?135°.

??AME??ECF.

??AEB??BAE?90°,?AEB??CEF?90°, ??BAE??CEF.

?△AME≌△BCF(ASA). ···················································································· (5分) ?AE?EF. ················································································································ (6分) (2)正确. ··································································· (7分) 证明:在BA的延长线上取一点N. 使AN?CE,连接NE. ············································ (8分) N F ?BN?BE. D A ??N??PCE?45°. ?四边形ABCD是正方形, ?AD∥BE.

B C E G ??DAE??BEA.

??NAE??CEF.

?△ANE≌△ECF(ASA). ··················································································· (10分) ?AE?EF. ·············································································································· (11分)

11(09天津)已知一个直角三角形纸片OAB,其中?AOB?90°,OA?2,OB?4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D. (Ⅰ)若折叠后使点B与点A重合,求点C的坐标; y

B

x O A (Ⅱ)若折叠后点B落在边OA上的点为B?,设OB??x,OC?y,试写出y关于x的函数解析式,并确定y的取值范围;

B y x O A

(Ⅲ)若折叠后点B落在边OA上的点为B?,且使B?D∥OB,求此时点C的坐标. y B 京翰教育1对1家教 http://www.zgjhjy.com/ O A x 初中数学辅导网 http://www.shuxuefudao.cn

解(Ⅰ)如图①,折叠后点B与点A重合, 则△ACD≌△BCD.

设点C的坐标为?0,m??m?0?. 则BC?OB?OC?4?m. 于是AC?BC?4?m.

在Rt△AOC中,由勾股定理,得AC?OC?OA,

22即?4?m??m?2,解得m?22223. 2?3?········································································································ 4分 ?点C的坐标为?0,?. ·2??(Ⅱ)如图②,折叠后点B落在OA边上的点为B?,

则△B?CD≌△BCD. 由题设OB??x,OC?y, 则B?C?BC?OB?OC?4?y,

在Rt△B?OC中,由勾股定理,得B?C?OC?OB?.

222??4?y??y2?x2,

212x?2 ···················································································································· 6分 8由点B?在边OA上,有0≤x≤2,

1? 解析式y??x2?2?0≤x≤2?为所求.

8即y??? ?当0≤x≤2时,y随x的增大而减小,

3?y的取值范围为≤y≤2. ······················································································· 7分

2(Ⅲ)如图③,折叠后点B落在OA边上的点为B??,且B??D∥OB. 则?OCB????CB??D.

??OCB????CBD,有CB??∥BA. 又??CBD??CB??D,?Rt△COB??∽Rt△BOA. OB??OC?有,得OC?2OB??. ···················································································· 9分 OAOB在Rt△B??OC中,

设OB???x0?x?0?,则OC?2x0. 由(Ⅱ)的结论,得2x0??12x0?2, 8京翰教育1对1家教 http://www.zgjhjy.com/

初中数学几何的动点问题专题练习 - 图文

初中数学辅导网http://www.shuxuefudao.cn解(1)如图1,过点E作EG?BC于点G.···························1分∵E为AB的中点,1∴BE?AB?2.2在Rt△EBG中,∠B?60?,∴∠BEG?30?.··············2分
推荐度:
点击下载文档文档为doc格式
1jxtc511yy3fmdy9vdg4
领取福利

微信扫码领取福利

微信扫码分享