好文档 - 专业文书写作范文服务资料分享网站

[奥赛]小学数学竞赛:鸡兔同笼问题(二).学生版解题技巧 培优 易错 难

天下 分享 时间: 加入收藏 我要投稿 点赞

6-1-9.鸡兔同笼问题(二)

教学目标

1. 熟悉鸡兔同笼的“砍足法”和“假设法”.

2. 利用鸡兔同笼的方法解决一些实际问题,需要把多个对象进行恰当组合以转化成两个对象.

知识精讲

一、鸡兔同笼

这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?

你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗? 二、解鸡兔同笼的基本步骤

解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即47?35?12(只).显然,鸡的只数就是35?12?23(只)了.

这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.

假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.

解鸡兔同笼问题的基本关系式是:

如果假设全是兔,那么则有:数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数) 兔数=鸡兔总数-鸡数

如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数) 鸡数=鸡兔总数-兔数 当头数一样时,脚的关系:兔子是鸡的2倍 当脚数一样时,头的关系:鸡是兔子的2倍

在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法

例题精讲

两个量的“鸡兔同笼”问题——变例

【例 1】 某次数学竞赛,共有20道题,每道题做对得5分,没做或做错都要扣2分,小聪得了79分,他做对

了多少道题?

【巩固】 数学竞赛共有20道题,规定做对一道得5分,做错或不做倒扣3分,赵天在这次数学竞赛中得了

60分,他做对了几道题?

【巩固】 东湖路小学三年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题都要倒扣2分.刘钢得了86分,问他做对了几道题?

【巩固】 某次数学竞赛,试题共有10道,每做对一题得6分,每做错一题倒扣2分。小红最终得44分,做

对的题比做错的题多______道。

【巩固】 次数学竞赛有10道试题,若小宇得70分,根据图5中两人的对话可知小宇答对_________题。

【巩固】 一次口算比赛,规定:答对一题得8分,答错一题扣5分。小华答了18道题,得92分,小华在此

次比赛中答错了________ 道题。

【例 2】 某工人与老板签订了一份30天的劳务合同:工作一天可得报酬48元,休息一天则要从所得报酬中

扣掉12元。该工人合同到期后并没有拿到报酬,则他最多工作了_________天。

【例 3】 春风小学3名云参加数学竞赛,共10道题,答对一道题得10分,答错一道题扣3分,这3名同学

都回答了所有的题,小明得了87分,小红得了74分,小华得了9分,他们三人一共答对了_____道题.

【例 4】 张明、李华两人进行射击比赛,规定每射中一发得20分,脱靶一发扣12分,两人各射了10发,共

得208分,其中张明比李华多64分,则张明射中___________发。

【巩固】 小明和小刚进行数学解题能力对抗赛,两人商定,对一题得20分,不答或答错一题扣12分。两人

各解答了10道题,一共得208分,又知道小明比小刚多得64分。那么小刚做对了 道题。

【巩固】 有两次自然测验,第一次24道题,答对1题得5分,答错(包含不答)1题倒扣1分;第二次15道

题,答对1题8分,答错或不答1题倒扣2分,小明两次测验共答对30道题,但第一次测验得分比第二次测验得分多10分,问小明两次测验各得多少分?

【例 5】 某旅游点有儿童票、成人票两种规格的门票卖,儿童票的价格为30元,成人票的价格为40元,如

果是团体还可以买平均32元一位的团体票,一个由8个家庭组成的旅游团(每个家庭由两位大人,或两个大人、一个小孩组成)来景点旅游,如果他们买团体票那么可以比他们各买各的少花120元,问这个旅游团一共有多少人?

【例 6】 一张数学试卷,只有25道选择题.做对一题得4分,做错一题倒扣1分;如不做,不得分也不扣分.若

小明得了78分,那么他做对 题,做错 题,没做 题.

【例 7】 一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆.已知每辆大卡车比每辆小卡车多装4吨,

那么这批钢材有多少吨?

【例 8】 下面是小波和售货员阿姨的一段对话:小波:“阿姨,您好!” 售货员:“同学,你好.想买点什

么?”小波:“我只有100元,请帮我安排买10支钢笔和15本笔记本.”售货员:“好,每支钢笔比每本笔记本贵2元,退你5元,请拿好.再见.”根据这段对话,则钢笔每支是 元,笔记本每本是 元.

【例 9】 买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票

各买了多少张

【例 10】 喜羊羊的存钱罐中只有5角和1元的硬币共100枚,其中5角的硬币比1元的硬币多20元,喜

羊羊的存钱罐中总共有________钱。

【例 11】 小同有一个储蓄筒,存放的都是硬币,其中2分币比5分币多22个;按钱数算,5分币却比2

分币多4角;另外,还有36个1分币.小同共存了多少钱?

【例 12】 现有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油

20千克,问大小桶各多少个?

【例 13】 大、小猴共35只,它们一起去采摘水蜜桃.猴王不在时,一只大猴一个小时可采摘15千克,一

只小猴子一小时可摘11千克;猴王在场监督的时候,每只猴子不论大小每小时都可以多采摘12千克.一天,采摘了8小时,其中第一小时和最后一小时猴王在监督,结果共采摘了4400千克水蜜桃.在这个猴群中,共有小猴子多少只?

【例 14】 今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟

的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?

【例 15】 一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有

事由乙接着打完,共用了7小时.甲打字用了多少小时?

【例 16】 箱子里红、白两种玻璃球,红球数是白球数的3倍多2只,每次从箱子里取出7只白球、15只

红球.如果经过若干次以后,箱子里剩下3只白球、53只红球.那么箱子里原有红球多少只?

【例 17】 车库中停放若干辆双轮摩托车和四轮小卧车,车的辆数与车的轮子数之比是2∶5。问:摩托车

的辆数与小卧车的辆数之比是多少?

[奥赛]小学数学竞赛:鸡兔同笼问题(二).学生版解题技巧 培优 易错 难

6-1-9.鸡兔同笼问题(二)教学目标1.熟悉鸡兔同笼的“砍足法”和“假设法”.2.利用鸡兔同笼的方法解决一些实际问题,需要把多个对象进行恰当组合以转化成两个对象.知识精讲一、鸡兔同笼这个问题,是
推荐度:
点击下载文档文档为doc格式
1jsdl3xsm57l7tx29ybm0wacw0f2p400gdu
领取福利

微信扫码领取福利

微信扫码分享