图形的放大与缩小
【21-22】
教学内容:教科书56——58页的内容及相关练习 教学目标:
1、知识技能目标:了解图形的放大与缩小的意义;能在方格纸上按一定的比画出放大与缩小的图形;通过图形的放大与缩小体会图形的相似。
2、过程方法目标:通过观察、理解、动手操作等数学活动来体验图形放大与缩小的方法;培养学生的空间观念和动手操作能力。 3、情感态度目标:激发学生学习数学的兴趣和求知欲,使学生积极参与学习活动,在学习过程中感受成功的喜悦。 教学重点:理解图形的放大与缩小。 教具准备:多媒体课件
学具准备:方格纸两张、彩笔、尺子。 教学过程:
一、 创设情境,导入新课。 1、观察体验。 出示多媒体课件。
师:老师这有一张非常有纪念意义的照片,我们来一起看一看。(照片很小,学生看不清楚。) 教师逐步将照片放大两次,使学生看清照片。
师:这么有纪念意义的照片为什么刚才我们看不清,现在却看清了呢? 2、联系生活实际。 (1)观看主题图。
师:通过放大照片我们看清楚了照片,看来生活中我们有时需要把物体放大,其实有的时候我们也需要把物体缩小。(多媒体课件)来看看这些生活中的现象,你们知道他们反映的是哪种情况吗?可以联系人物的活动来谈。 学生自由发言。 (2)学生举例。
师:你们在生活中还见过其他放大缩小的现象吗?指名说一说。
师:看来放大缩小现象在我们生活中的各个领域应用还是十分普遍的。今天这节课我们就来一起研究“图形的放大与缩小”。 板书课题。 二、探究新知。
(一)感知图形的放大。(多媒体出示方格纸上的平面图形) 1、初步感知画在方格纸上的平面图形。
师:我们已经认识过许多的平面图形了。老师这把正方形、长方形和直角三角形分别画在了方格纸上。大家看一看画在方格纸上的三个图,我们能获得哪些相关的数学信息?学生自由谈。 2、理解要求。(多媒体出示例4的要求) 师:你怎么理解这个要求?学生自由发言。
3、通过画正方形了解画法。
师:按2:1画出放大后的图形,其实就是要把原图形的各条边放大到原来的2倍。谁能以这个正方形为例来具体说一说怎样画出它按2:1放大后的图形。学生试说。
学生在方格纸上画出正方形按2:1放大后的图形,并想一想你是用什么方法画得。指名代表用实物投影展示并介绍自己的方法。 教师总结学生方法中的重要一点:先确定一个固定的点,以它做为确定图形位置的重要点再画出其他的部分。 教师用多媒体课件展示画放大后正方形的过程。 4、经历画长方形和直角三角形的过程。
(多媒体出示要求)学生自己画出两个图形按1:3缩小之后的图形,并在小组里互相检查。教师用多媒体展示画的过程。 师:直角三角形和其他的两个图形不同,它有一条斜的边,谁能来介绍一下你是怎么画的。 学生展示画法。 5、置疑。
学生提出自己的置疑。
小组合作学习解决学生提出的置疑。
选取代表介绍自己的方法和找到的答案。教师配合多媒体课件随机演示验证的过程。
学生试概括发现,多媒体出示。(一个图形按一定的比放大,它的每条边都按相同的比放大。) 6、引导发现。
学生比较放大后图形和原来的图形的大小和形状,并总结概括。多媒体出示。 (二)感知图形的缩小。
师:我们一起研究了图形按一定的比放大的画法以及放大后图形的一些特点。如果把图形按一定的比缩小该怎么画,图形按一定的比缩小之后会不会也有什么特点呢? 出示缩小的要求。
1、 学生小组合作学习。 2、 交流评议。
选取学生代表的作品展示,多媒体完成按一定的比缩小后画出的图形。 学生试说自己的发现并尝试总结。
3、 总结发现。
学生试总结图形按一定的比放大或缩小的特点。
教师在学生充分的发言之后用多媒体出示图形放大和缩小的特点。 三、 应用练习。 1、 观察判断。 (1)选择。
学生选择并说明理由。通过此题使学生区分放大和按比例放大的区别和联系。 (2)目测。
多媒体出示目测题:右面的国旗图片是把左面的图片按什么比缩小的? 学生先目测,教师通过多媒体动画演示验证。 2、 画一画,说一说。
(1)(2)问,学生独立完成。
教师再出示(3)请你按照下面的句式表述3个三角形之间的放大和缩小关系。 3、 发展练习。
学生根据教师给出的组合图形,自己设定一个放大或者缩小的比,然后在方格纸上画出按这个比放大或者缩小后的图形。画完后学生展示自己的作品并介绍画法。
用比例解决问题
【23】
教学内容:教科书P59~60例5、例6,练习九3、7题。 教学目标:
1、使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。
2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。 3、培养学生良好的解答应用题的习惯。
教学重点:用比例知识解答比较容易的归一、归总应用题。 教学难点:正确分析题中的比例关系,列出方程。 教学过程:
一、复习铺垫,引入新课。(课件出示) 1、判断下面每题中的两种量成什么比例? (1)速度一定,路程和时间. (2)路程一定,速度和时间. (3)单价一定,总价和数量.
(4)每小时耕地的公顷数一定,耕地的总公顷数和时间. (5)全校学生做操,每行站的人数和站的行数.
2、下面各题中各有哪三种量?那种量一定?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能列出等式吗? (1)用一批纸装订练习本,每本30页,可装订200本,每本50页,可装订120本。 (2)一列火车从甲地到乙地,2小时行驶60千米,照这样的速度,8小时可行240千米。 (3)读一本书,每天读20页,6天可以读完,如果每天读5页,需要x天读完。
3、课件出示例5情境图,问:你能说出这幅图的意思吗?(指名回答)李奶奶家上个月的水费是多少钱?想请我们帮她算一算,你们能帮这个忙吗?
(1)学生自己解答,然后交流解答方法。
(2)引入新课:象这样的问题也可以用比例的知识来解决,我们今天这节课就来讨论如何运用比例的知识来解决这类问题。板书课题:用比例解决问题 二、探究新知。 1、教学例5
(1)学生再次读题,理解题意。思考和讨论下面的问题: ① 问题中有哪三种量?哪一种量一定?哪两种量是变化的? ② 它们成什么比例关系?你是根据什么判断的? ③ 根据这样的比例关系,你能列出等式吗?
(2)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。 (3)根据正比例的意义列出方程: 12.88=χ10
解:设李奶奶家上个月的水费是χ元。 8χ= 12.8×10 χ=128÷8
χ= 16
答:李奶奶家上个月的水费是16元。
(4)将答案代入到比例式中进行检验。
2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,指名板演并交流订正,比较两题的异同点,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了) 3、教学例6
(1)出示例6情境图,你能说出这幅图的意思吗?(指名回答)
(2)学生根据例5的解题思路思考:题中已知两种量?什么是一定的?已知的两个量成什么关系? (3)学生独立解答。
(4)指名板演,全班交流。 三、巩固提高。
做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。 四、课堂小结。
今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么? 五、课堂作业。
教科书P62练习九第3、7题。
自行车里的数学
【24】
教学目标
知识与技能:巩固比例知识,了解普通自行车的速度与其内在结构的关系;变速自行车的能变化出多少种速度。
过程与方法:经历“提出问题—分析问题—建立数学模型—求解—解释与应用”的解决问题的基本过程,获得运用数学解决实际问题的思考方法。
情感态度与价值观:加深学生对所学知识及其相互关系的理解。培养学生学以致用,做事认真,用数学眼光透视周围事物,增强数学意识。 教学重难点
引导学生理解变速自行车能变速的原理。 教学过程 一、揭示课题
1、说一说你了解到的有关这两种自行车(普通自行车和变速自行车)的知识。 2、自行车里会有数学问题吗?想一想。
二、研究普通自行车的速度与内在结构的关系
1、提出问题:两种自行车,各蹬一圈。能走多远?引出学生对自行车里的数学的研究。 2、分析问题
(1)学生讨论如何解决问题。
方案一:直接测量,但是误差较大。
方案二:根据车轮的周长乘以后车轮转的圈数,来计算蹬一圈车子走的距离。 (2)讨论:前齿轮转一圈,后齿轮转几圈?
前齿轮转的圈数× 前齿轮的齿数=后齿轮转的圈数× 后齿轮的齿数 3、建立数学模型,收集数据并求解。
(1)蹬一圈车子走的距离=车轮的周长×(前齿轮的齿数 :后齿轮的齿数) (2)分组收集所需要的数据,带入上述模式,求出答案。 4、汇报结果。
各小组展示并解释本组的研究过程和结果,在比较结果。 三、研究变速自行车能组合出多少种速度?
1、提出问题:变速自行车能组合出多少种速度?
(1)了解变速自行车的结构。(有2个前齿轮,6个后齿轮。) (2)根据这个结构,可以组合出多少种速度? 2、分析问题,求解,汇报。
3、蹬同样的圈数,哪种组合使自行车走得最远? 四、学以致用
一辆变速自行车有2个前齿轮,分别有46和38个齿,有4个后齿轮,分别有20、16、14、12个齿,车轮直径66cm。小明从家到学校有一段平路和不是很陡的上坡路。平路1000米,上坡800米,小明如何使用变速车比较合理?小明骑车走这段平路至少蹬多少圈? 五、课堂小结
自行车里的学问可真大,你还能提出一些数学问题并解决吗? [自行车里的数学]
1、踏板蹬一圈,是不是车轮也走一圈? 2、踏板蹬一圈,所走的路程与什么有关 3检测
(1)、一辆自行车的车轮直径是0.7米,前齿轮有48个齿,后齿轮有16个齿,蹬一圈自行车前进多少米?
(2)、一辆前齿轮有28个齿,后齿轮有14个齿,蹬一圈自行车前进5米。求自行车的车轮直径。(保留两为小数)
四、统计 【25-26】
单元要点分析 教学内容
本单元教学内容主要是探究制作扇形统计图和折线统计图的技能问题。 教材分析
本单元内容大在学生已经学习过一些简单的数据整理以及学会制作一些简单的统计图的基础上,来进一步学习有关扇形统计图和折线统计图的绘制技能。
教材编排的内容比较简单,通过两道例题分别说明如何合理制作扇形统计图和折线统计图,使之正确、充分地反映出有关数据,正确体现各统计图的特征,使学生进一步掌握统计图的特点和作用。 三维目标 知识与技能
1、使学生进一步认识统计的意义,掌握扇形统计图和折线统计图的特征与作用,能正确描述统计图中的数据。 2、使学生能正确地制作统计图,充分利用统计图的特征准确、合理、规范地反映出有关数据。 过程与方法
1、经历描述和分析数据的过程,针对统计图提供的数据不清问题,能提出质疑和修改建议,提高制作统计图的技能。 2、在运用统计图解决问题的过程中,发展学生的统计观念。 3、初步形成评价与反思的意识。 情感、态度与价值观
1、能积极参与探究活动,对自己得到的结果正确与否有一定的把握,相信自己在学习中可以取得不断的进步。 2、形成实事求是的态度以及进行质疑的习惯。 重难点、关键
重点:绘制扇形统计图和折线统计图。
难点:根据折线统计图正确描述数量变化情况。 关键:根据统计图进行比较、判断时要统一标准。 课时划分
本单元计划课时数:2课时
第一课时:扇形统计图
教学内容
扇形统计图(课文第68页的例1,练习十一相应的练习) 教学目标
1、使学生进一步掌握扇形统计图的特征和作用,能正确描述扇形统计图所反映的有关数据.
2、使学生能正确运用扇形统计图反映有关数据,提高处理数据的技能,发展学生的应用意识和实践能力. 3、初步形成评价与反思的意识. 重难点、关键 重点:扇形统计图.
难点:发现统计图中存在的数据不清的问题. 关键:认真分析统计图中所反映的数据. 教学过程 一、旧知铺垫
电脑课件呈现扇形统计图
某校学生最喜欢的文艺节目情况统计图 (图略)
1、问:从图中你能了解到哪些信息?
(1)喜欢同一首歌的人数占调查人数的45﹪ 喜欢相声的人数占调查人数的18﹪ 喜欢小品的人数占调查人数的25﹪
喜欢其他文艺节目的人数占调查人数的12﹪ (2)喜欢同一首歌的人数最多
绝大部分同学都喜欢同一首歌,小品和相声 喜欢其他文艺节目的人数最少
2、说一说这是什么统计图,它有什么特征? (1)扇形统计图
(2)特征:可以清楚地反映出各部分量占总量的百分之几 二探索新知 教学例1
电脑课件出示课文例题统计图
下面是一幅彩电市场各部分品牌占有率的统计图 (图略)
(1)从图中你了解到哪些信息? A牌彩电占市场销售量的20﹪ B牌彩电占市场销售量的15﹪ C牌彩电占市场销售量的10﹪ D牌彩电占市场销售量的8﹪
其他品牌彩电占市场销售量的47﹪
(2)有人认为A牌彩电最畅销,你同意他的观点吗? ①学生独立思考,分析题中的数量
○2小组交流,学生在小组中说一说自己的看法 ○3汇报交流结果
经过讨论,交流,使全体同学懂得:在“其他”里面还可能包含有比A牌更畅销的彩电.所以,从这个统计图不能判断出哪个品牌的彩电最畅销. (3)建议
上面这幅统计图提供的数据不清,无法全面地反映有关彩电市场各品牌占有率的情况,你有什么修改建议?
①通过交流,使学生懂得:“其他”所占有的份额应该是最小的部分,这样才能全面地反映各个数量占有率的情况,突出扇形统计图的特征和作用.
②建议:在进行数据整理时,将“其他”当中的一些品牌彩电所占份额单单独计算,在统计图中详细标出它的占有率 三巩固练习
完成课文练习十一第1题
(1)说一说,你从图中得到哪些信息.
(2)从图中你能判断出喜欢哪种文艺节目的人数最多吗?为什么? (3)你有什么修改建议? 四、布置作业
第二课时:折线统计图
教学内容:
折线统计图(教科书第68页的例2,练习十一相应的练习) 教学目标:
1.使学生进一步了角折线统计图的特征和作用,能根据统计图正确描述有关数据的变化情况,发展学生的统计观念。 2.初步形成评价与反思的意识。 教学重点:折线统计图。
教学难点:正确判断数量变化趋势。 教学过程: 一旧知铺垫
1.出示统计图。
2003年北京地区新增“非典”病人数量统计图(4月26日~5月31日) (图略)
2.回答问题。
(1)这是什么统计图?
(2)这种统计图有什么特征?
(3)说一说这里病人数量的变化情况。 二探索新知 教学例2。
1.出示课文例题。
学生认真观察,分析图中的数量变化情况。 (1)、7月份到12月份的月薪逐月上升。