这类抑制剂通常以共价键与酶活性中心上的必需基团相结合,使酶失活,一般不能用透析、超滤等物理方法去除。这类抑制作用可用某些药物解毒,使酶恢复活性。如农药敌百虫、敌敌畏、1059等有机磷化合物能特异地与胆碱酯酶活性中心的丝氨酸羟基结合,使酶失活,导致乙酰胆碱不能水解而积存。迷走神经兴奋呈现中毒状态。解磷定(PAM)可解除有机磷化合物对羟基酶的抑制作用,显然这类解毒药物和有机磷农药结合的强度大于和酶结合。重金属盐引起的巯基酶中毒,可用络合剂或加入其他过量的巯基化合物,如二巯基丙醇(BAL)来解毒。
(二) 可逆抑制作用
这类抑制剂通常以非共价键与酶可逆性结合,使酶活性降低或失活,采用透析、超滤的方法可去除抑制剂,恢复酶活性。可逆抑制有竞争、非竞争、反竞争3种类型,以竞争性抑制研究的最多。三种作用的共同点是因Km和Vmax值的变化导致酶促反应初速度下降。竞争性抑制剂的结构与底物类似,且在酶的同一部位(活性中心)和酶结合,仅在加大底物浓度时才逐渐抵消,显然Km值要增加,Vmax不变。非竞争性抑制剂不直接影响酶与底物的结合,酶同时和二者结合生成的中间产物是三元复合物,也无正常产物生成,所以Km不变,而Vmax减小。反竞争抑制剂促进酶与底物的结合,形成的三元复合物也不能形成正常产物,所以Km变小,Vmax也变小。
药物是酶的抑制剂。竞争性抑制原理应用范例是磺胺药的研制。磺胺药和细菌合成叶酸所需的对氨基苯甲酸仅一个碳原子之别(变成了S),使细菌的叶酸不能正常合成,导致细菌的核苷酸合成受阻而死亡。而人以摄入叶酸为主,故磺胺药对人的核酸合成无影响。
第五节 酶的制备和应用 一、酶的制备
酶可以从动物、植物、微生物等各种原料中提取或用微生物发酵法生产酶制剂。
酶在生物体内与大量其他物质共同存在,含量很少,又是有催化活性蛋白质,除了采用分离纯化蛋白质的一般方法,如盐析、有机溶剂沉淀、吸附、凝胶过滤、超离心法外,还要注意防止强酸、强碱、高温和剧烈搅拌等,以避免酶活力的损失。
胞内酶和胞外酶的提取在处理方法上有所不同。胞内酶需要先用捣碎、砂磨、冻融、或自溶等方法将细胞破坏,然后再用适当的分离纯化技术提出。
酶的活力(activity)就是酶加快其所催化的化学反应速度的能力。一般用催化反应的起始速率(Vo)表示,Vo的单位是微摩尔/分,也可用国际单位(U)和“开特”(Kat)表示。1分钟内催化1微摩尔的作用物转变成产物的酶量为1U;1秒钟内催化1摩尔的作用物转变成产物的酶量为1Kat。1微摩尔/分=1U=16.67nKat(1Kat=6×107U)。
比较酶制剂的纯度可用比活力(specific activity),即每毫克蛋白质中所含的U数。
二、酶的应用
早在19世纪末,就有酶制剂的商品生产,目前已有1千多种,在工业、农业、医药以及科学研究中日益发挥它的巨大作用。
例如淀粉酶用于纺织品的退浆,可节约大量的碱并提高棉布的质量。处理饲料以增加其营养价值。脂肪酶用于食品增香、羊毛洗涤。蛋白酶用于皮革业的脱毛、蚕丝脱胶、肉类嫩化、酒类澄清、洗涤剂去污等。葡萄糖异构酶用来制造果糖浆,葡糖氧化酶用来除去罐头中残余的氧。
酶可作为试剂用于临床检验,如酶联免疫测定;作为药物用于临床治疗,如胃蛋白酶、胰蛋白酶助消化,链激酶、尿激酶治疗血栓的形成;基因工程中应用各种限制性核酸内切酶进行科研和生产。
酶的开发和利用是现代生物技术的重要内容。1971年命名了酶工程(enzyme engineering),这是把酶学原理与化学工程技术及基因重组技术相结合而形成的新型应用技术。酶工程可分为化学酶工程和生物酶工程。前者指天然酶、化学修饰酶、
固定化酶及人工模拟酶的研究和生产;后者指克隆酶、突变酶和合成新酶等内容的研究和应用。
第四章 新陈代谢总论与生物氧化
教学目标:
1. 掌握新陈代谢的概念与特点,了解新陈代谢研究方法。了解生物体内能量代谢的基本规律。
2. 掌握生物氧化的概念、特点、部位,主要酶类和体系。熟悉生物氧化中二氧化碳、水的生成,掌握呼吸链的组成、类型和传递体顺序。
3. 掌握氧化磷酸化的概念、类型、偶联部位和P/O比值,熟悉影响氧化磷酸化因素、胞液中NADH的氧化和偶联机制。
第一节 新陈代谢总论 一、新陈代谢的概念与特点
生物体是一个与环境保持着物质、能量和信息交换的开放体系。通过物质交换建造和修复生物体(按人的一生计,交换物质的总量约为体重的1200倍,人体所含的物质平均每10天更新一半)。通过能量交换推动生命运动,通过信息交换进行调控,保持生物体和环境的适应。
新陈代谢(metabolism)是指生物与外界环境进行物质交换和能量交换的全过程。包括生物体内所发生的一切合成和分解作用(即同化作用和异化作用)。
人和动物的物质代谢分为三个阶段:食物、水、空气进入机体(摄取营养物的消化和吸收)、中间代谢和代谢产物的排泄。中间代谢是指物质在细胞中的合成与分解过程,合成是吸能反应,分解是放能反应。它们是矛盾对立和统一的。所以,
新陈代谢的功能是:从周围环境中获得营养物质;将营养物质转变为自身需要的结构元件;将结构元件装配成自身的大分子;形成或分解生物体特殊功能所需的生物分子;提供机体生命活动所需的一切能量。
各种生物具有各自特异的新陈代谢类型,这决定于遗传和环境条件。绿色植物及某些细菌有光合作用,若干种细菌有固氮作用,是自养型的;动物与人是异养生物,同化作用必须从外界摄取营养物质,通过消化吸收进入中间代谢。同一生物体的各个器官或不同组织还具有不同的代谢方式。
各种生物的新陈代谢过程虽然复杂,却有共同的特点:
1.生物体内的绝大多数代谢反应是在温和条件下,由酶催化进行的。 2.物质代谢通过代谢途径,在一定的部位,严格有序地进行。各种代谢途径彼此协调组成有规律的反应体系(网络)。
3.生物体对内外环境条件有高度的适应性和灵敏的自动调节。 二、新陈代谢的研究方法
代谢途径的研究比较复杂,可从不同水平,主要对中间代谢进行研究。新陈代谢途径的阐明凝集了许多科学家的智慧与实验成果。如1904年德国化学家Knoop提出的脂肪酸的β氧化学说,1937年Krebs提出的柠檬酸循环。
1.活体内(in vivo)和活体外(in vitro)实验 2.同位素示踪法和核磁共振波谱法(NMR) 3.代谢途径阻断法
三、生物体内能量代谢的基本规律
1.服从热力学原理。热力学第一定律是能量守恒定律,热力学第二定律指出,热的传导自高温流向低温。机体内的化学反应朝着达到其平衡点的方向进行。
2.生化反应最重要的热力学函数是吉布斯自由能G 。自由能是在恒温、恒压下,一个体系作有用功的能力的度量。用于判断反应可否自发进行,是放能或耗能反应。
ΔG<0,表示体系自由能减少,反应可以自发进行,但是不等于说该反应一定
发生或以能觉察的速率进行,是放能反应。
ΔG>0,反应不能自发进行,吸收能量才推动反应进行。 ΔG=0,体系处在平衡状态。
自由能与另外两个函数有关,ΔG=ΔH - TΔS(ΔH是总热量的变化,ΔS是总熵的改变,T是体系的绝对温度)。
标准自由能变化用ΔGO'表示(25OC,1个大气压,pH为7,反应物和产物浓度为1mol/L时所测得,单位是kJ/mol)。
3.ΔGO'和化学平衡的关系 ΔG = ΔGO'+ RT ln[C][D]/[A][B]
ΔG=0时,ΔGO'= - RTln[C][D]/[A][B]= -RTlnK= -2.303RTlgK
(R为气体常数,lnK为平衡常数的自然对数。K>1,ΔGO'为负值,反应趋于生成物的方向进行;K<1,ΔGO'为正值。)
注意:ΔG只取决于产物与反应物的自由能之差,与反应历程无关。总自由能变化等于各步反应自由能变化的代数和。热力学上不利的吸能反应可以偶联放能反应来推动以保持代谢途径一连串反应的进行。
四、高能化合物与ATP的作用
高能化合物(high-energy compound)指化合物含有的自由能特多,且随水解反应或基团转移反应释放。最重要的有高能磷酸化合物,还有硫酯类和甲硫类高能化合物。高能磷酸化合物的酸酐键常用~P表示,水解时释放的自由能大于20kJ,称为高能磷酸键。生化中“高能键”的含义与化学中的“键能”完全不同。“键能”指断裂一个化学键需提供的能量。
ATP是细胞内特殊的自由能载体。在标准状况,ATP水解为ADP和Pi的ΔGO'=-30kJ/mol,水解为AMP和PPi的ΔGO'=-32kJ/mol。ATP的ΔGO'在所有的含磷酸基团的化合物中处于中间位置,这使ATP在机体起作中间传递能量的作用,称之能量的共同中间体。机体内一些在热力学上不可能发生的反应,只需与ATP分子