好文档 - 专业文书写作范文服务资料分享网站

高考高考数学难点突破难点12等差数列、等比数列的性质运用

天下 分享 时间: 加入收藏 我要投稿 点赞

难点12 等差数列、等比数列的性质运用

等差、等比数列的性质是等差、等比数列的概念,通项公式,前n项和公式的引申.应用等差等比数列的性质解题,往往可以回避求其首项和公差或公比,使问题得到整体地解决,能够在运算时达到运算灵活,方便快捷的目的,故一直受到重视.高考中也一直重点考查这部分内容.

●难点磁场

(★★★★★)等差数列{an}的前n项的和为30,前2m项的和为100,求它的前3m项的和为_________.

●案例探究

[例1]已知函数f(x)=(1)求f(x)的反函数f-1(x);

1x?42 (x<-2).

(2)设a1=1,

1an?1 =-f

--1

(an)(n∈N*),求an;

(3)设Sn=a12+a22+…+an2,bn=Sn+1-Sn是否存在最小正整数m,使得对任意n∈N*,有bn<

m25成立?若存在,求出m的值;若不存在,说明理由.

命题意图:本题是一道与函数、数列有关的综合性题目,着重考查学生的逻辑分析能力,属★★★★★级题目.

知识依托:本题融合了反函数,数列递推公式,等差数列基本问题、数列的和、函数单调性等知识于一炉,结构巧妙,形式新颖,是一道精致的综合题.

错解分析:本题首问考查反函数,反函数的定义域是原函数的值域,这是一个易错点,(2)问以数列{

1an2}为桥梁求an,不易突破.

技巧与方法:(2)问由式子

1an?1?1an2?4得

1an?12?1an2=4,构造等差数列{

1an2},从而

求得an,即“借鸡生蛋”是求数列通项的常用技巧;(3)问运用了函数的思想.

解:(1)设y=

1x2?4,∵x<-2,∴x=-4?1, 2y即y=f

--1

(x)=-4?1 (x>0) y2(2)∵

1an?11?4?1an,?21an?12?1an2?4,

∴{

an2}是公差为4的等差数列,

∵a1=1,

1an2=

1a12+4(n-1)=4n-3,∵an>0,∴an=

14n?3.

1m25,由bn<,得m>, 4n?1254n?12525设g(n)= ,∵g(n)= 在n∈N*上是减函数,

4n?14n?1(3)bn=Sn+1-Sn=an+12=

m成立. 25[例2]设等比数列{an}的各项均为正数,项数是偶数,它的所有项的和等于偶数项和的4倍,且第二项与第四项的积是第3项与第4项和的9倍,问数列{lgan}的前多少项和最大?(lg2=0.3,lg3=0.4)

命题意图:本题主要考查等比数列的基本性质与对数运算法则,等差数列与等比数列之间的联系以及运算、分析能力.属★★★★★级题目.

知识依托:本题须利用等比数列通项公式、前n项和公式合理转化条件,求出an;进而利用对数的运算性质明确数列{lgan}为等差数列,分析该数列项的分布规律从而得解.

错解分析:题设条件中既有和的关系,又有项的关系,条件的正确转化是关键,计算易出错;而对数的运算性质也是易混淆的地方.

技巧与方法:突破本题的关键在于明确等比数列各项的对数构成等差数列,而等差数列中前n项和有最大值,一定是该数列中前面是正数,后面是负数,当然各正数之和最大;另外,等差数列Sn是n的二次函数,也可由函数解析式求最值.

解法一:设公比为q,项数为2m,m∈N*,依题意有

∴g(n)的最大值是g(1)=5,∴m>5,存在最小正整数m=6,使对任意n∈N*有bn<

?a1?(q2m?1)a1q?(q2m?1)??q?1 q2?1??(aq)?(aq3)?9(aq2?aq3)111?1?4q1??q?1?1?q?化简得? 解得?3.

?aq2?9(1?q),??a1?108?1设数列{lgan}前n项和为Sn,则

-…-

Sn=lga1+lga1q2+…+lga1qn1=lga1n·q1+2++(n1)

11n(n-1)·lgq=n(2lg2+lg3)-n(n-1)lg3 22lg37=(-)·n2+(2lg2+lg3)·n

2272lg2?lg32可见,当n=时,Sn最大. lg3=nlga1+

72lg2?lg34?0.3?7?0.42而=5,故{lgan}的前5项和最大. ?lg32?0.4

?a1?1081n-11?解法二:接前,?1,于是lgan=lg[108()]=lg108+(n-1)lg,

q?33?3?∴数列{lgan}是以lg108为首项,以lg≥0,∴n≤

1为公差的等差数列,令lgan≥0,得2lg2-(n-4)lg332lg2?4lg32?0.3?4?0.4=5.5. ?lg30.4由于n∈N*,可见数列{lgan}的前5项和最大. ●锦囊妙计

1.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题的既快捷又方便的工具,应有意识去应用.

2.在应用性质时要注意性质的前提条件,有时需要进行适当变形.

3.“巧用性质、减少运算量”在等差、等比数列的计算中非常重要,但用“基本量法”并树立“目标意识”,“需要什么,就求什么”,既要充分合理地运用条件,又要时刻注意题的目标,往往能取得与“巧用性质”解题相同的效果.

●歼灭难点训练 一、选择题

1.(★★★★)等比数列{an}的首项a1=-1,前n项和为Sn,若( )

S1031,则limSn等于?S532n??

22 C.2 D.-2 A. B.?

33二、填空题

2.(★★★★)已知a,b,a+b成等差数列,a,b,ab成等比数列,且0

3.(★★★★)等差数列{an}共有2n+1项,其中奇数项之和为319,偶数项之和为290,则其中间项为_________.

4.(★★★★)已知a、b、c成等比数列,如果a、x、b和b、y、c都成等差数列,则ac?=_________. xy三、解答题

5.(★★★★★)设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0. (1)求公差d的取值范围;

(2)指出S1、S2、…、S12中哪一个值最大,并说明理由.

6.(★★★★★)已知数列{an}为等差数列,公差d≠0,由{an}中的部分项组成的数列

ab1,ab2,…,abn,…为等比数列,其中b1=1,b2=5,b3=17.

(1)求数列{bn}的通项公式;

Tn. nnn??4?b7.(★★★★)设{an}为等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2·b4=a3,分别求出{an}及{bn}的前n项和S10及T10.

23n(2)记Tn=C1nb1+Cnb2+Cnb3+…+Cnbn,求lim

高考高考数学难点突破难点12等差数列、等比数列的性质运用

难点12等差数列、等比数列的性质运用等差、等比数列的性质是等差、等比数列的概念,通项公式,前n项和公式的引申.应用等差等比数列的性质解题,往往可以回避求其首项和公差或公比,使问题得到整体地解决,能够在运算时达到运算灵活,方便快捷的目的,故一直受到重视.高考中也一直重点考查这部分内容.●难点磁场(★★★★★)等差数列{an}的
推荐度:
点击下载文档文档为doc格式
1j5ki70dm25zpak1cslt1is53085cn00i8x
领取福利

微信扫码领取福利

微信扫码分享