解:我们设想,每只鸡都是\金鸡独立\一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,·也就是 244÷2=122(只).
在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数 122-88=34,
有34只兔子.当然鸡就有54只. 答:有兔子34只,鸡54只. 上面的计算,可以归结为下面算式: 总脚数÷2-总头数=兔子数.
上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,\脚数\就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法. 还说例1.
如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了 88×4-244=108(只).
每只鸡比兔子少(4-2)只脚,所以共有鸡 (88×4-244)÷(4-2)= 54(只).
说明我们设想的88只\兔子\中,有54只不是兔子.而是鸡.因此可以列出公式 鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).
当然,我们也可以设想88只都是\鸡\那么共有脚2×88=176(只),比244只脚少了 244-176=68(只).
每只鸡比每只兔子少(4-2)只脚, 68÷2=34(只).
说明设想中的\鸡\有34只是兔子,也可以列出公式 兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).
上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数. 假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为\假设法\现在,拿一个具体问题来试试上面的公式.
例2 红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红,蓝铅笔各买几支
11
解:以\分\作为钱的单位.我们设想,一种\鸡\有11只脚,一种\兔子\有19只脚,它们共有16个头,280只脚.
现在已经把买铅笔问题,转化成\鸡兔同笼\问题了.利用上面算兔数公式,就有 蓝笔数=(19×16-280)÷(19-11) =24÷8 =3(支).
红笔数=16-3=13(支).
答:买了13支红铅笔和3支蓝铅笔.
对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的\脚数\与11之和是30.我们也可以设想16只中,8只是\兔子\只是\鸡\根据这一设想,脚数是 8×(11+19)=240. 比280少40. 40÷(19-11)=5.
就知道设想中的8只\鸡\应少5只,也就是\鸡\蓝铅笔)数是3.
30×8比19×16或11×16要容易计算些.利用已知数的特殊性,靠心算来完成计算.
实际上,可以任意设想一个方便的兔数或鸡数.例如,设想16只中,\兔数\为10,\鸡数\为6,就有脚数
19×10+11×6=256. 比280少24. 24÷(19-11)=3,
就知道设想6只\鸡\要少3只.
要使设想的数,能给计算带来方便,常常取决于你的心算本领. 下面再举四个稍有难度的例子.
例3 一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时
解:我们把这份稿件平均分成30份(30是6和10的最小公倍数),甲每小时打30÷6=5(份),乙每小时打30÷10=3(份).
现在把甲打字的时间看成\兔\头数,乙打字的时间看成\鸡\头数,总头数是7.\兔\的脚数是5,\鸡\的脚数是3,总脚数是30,就把问题转化成\鸡兔同笼\问题了. 根据前面的公式
\兔\数=(30-3×7)÷(5-3) =4.5,
12
\鸡\数=7-4.5 =2.5,
也就是甲打字用了4.5小时,乙打字用了2.5小时. 答:甲打字用了4小时30分.
例4 今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年
解:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄看作\鸡\头数,弟的年龄看作\兔\头数.25是\总头数\是\总脚数\根据公式,兄的年龄是
(25×4-86)÷(4-3)=14(岁). 1998年,兄年龄是 14-4=10(岁). 父年龄是
(25-14)×4-4=40(岁).
因此,当父的年龄是兄的年龄的3倍时,兄的年龄是 (40-10)÷(3-1)=15(岁). 这是2003年.
答:公元2003年时,父年龄是兄年龄的3倍.
例5 蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只
解:因为蜻蜓和蝉都有6条腿,所以从腿的数目来考虑,可以把小虫分成\条腿\与\条腿\两种.利用公式就可以算出8条腿的 蜘蛛数=(118-6×18)÷(8-6) =5(只).
因此就知道6条腿的小虫共 18-5=13(只).
也就是蜻蜓和蝉共有13只,它们共有20对翅膀.再利用一次公式 蝉数=(13×2-20)÷(2-1)=6(只). 因此蜻蜓数是13-6=7(只). 答:有5只蜘蛛,7只蜻蜓,6只蝉.
13
例6 某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数一样多,那么做对4道的人数有多少人 解:对2道,3道,4道题的人共有 52-7-6=39(人). 他们共做对
181-1×7-5×6=144(道).
由于对2道和3道题的人数一样多,我们就可以把他们看作是对2.5道题的人((2+3)÷2=2.5).这样 兔脚数=4,鸡脚数=2.5, 总脚数=144,总头数=39. 对4道题的有
(144-2.5×39)÷(4-1.5)=31(人). 答:做对4道题的有31人. 习题一
1.龟鹤共有100个头,350只脚.龟,鹤各多少只
2.学校有象棋,跳棋共26副,恰好可供120个学生同时进行活动.象棋2人下一副棋,跳棋6人下一副.象棋和跳棋各有几副
3.一些2分和5分的硬币,共值2.99元,其中2分硬币个数是5分硬币个数的4倍,问5分硬币有多少个
4.某人领得工资240元,有2元,5元,10元三种人民币,共50张,其中2元与5元的张数一样多.那么2元,5元,10元各有多少张
5.一件工程,甲单独做12天完成,乙单独做18天完成,现在甲做了若干天后,再由乙接着单独做完余下的部分,这样前后共用了16天.甲先做了多少天
6.摩托车赛全程长281千米,全程被划分成若干个阶段,每一阶段中,有的是由一段上坡路(3千米),一段平路(4千米),一段下坡路(2千米)和一段平路(4千米)组成的;有的是由一段上坡路(3千米),一段下坡路(2千米)和一段平路(4千米)组成的.已知摩托车跑完全程后,共跑了25段上坡路.全程中包含这两种阶段各几段
7.用1元钱买4分,8分,1角的邮票共15张,问最多可以买1角的邮票多少张 二,\两数之差\的问题
鸡兔同笼中的总头数是\两数之和\如果把条件换成\两数之差\又应该怎样去解呢
例7 买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张
解一:如果拿出40张8分的邮票,余下的邮票中8分与4分的张数就一样多.
14
(680-8×40)÷(8+4)=30(张),
这就知道,余下的邮票中,8分和4分的各有30张. 因此8分邮票有 40+30=70(张).
答:买了8分的邮票70张,4分的邮票30张. 也可以用任意假设一个数的办法.
解二:譬如,假设有20张4分,根据条件\分比4分多40张\那么应有60张8分.以\分\作为计算单位,此时邮票总值是 4×20+8×60=560.
比680少,因此还要增加邮票.为了保持\差\是40,每增加1张4分,就要增加1张8分,每种要增加的张数是
(680-4×20-8×60)÷(4+8)=10(张).
因此4分有20+10=30(张),8分有60+10=70(张).
例8 一项工程,如果全是晴天,15天可以完成.倘若下雨,雨天一天 工程要多少天才能完成
解:类似于例3,我们设工程的全部工作量是150份,晴天每天完成10份,雨天每天完成8份.用上一例题解一的方法,晴天有 (150-8×3)÷(10+8)= 7(天). 雨天是7+3=10天,总共 7+10=17(天).
答:这项工程17天完成.
请注意,如果把\雨天比晴天多3天\去掉,而换成已知工程是17天完成,由此又回到上一节的问题.差是3,与和是17,知道其一,就能推算出另一个.这说明了例7,例8与上一节基本问题之间的关系. 总脚数是\两数之和\如果把条件换成\两数之差\又应该怎样去解呢 例9 鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只
解一:假如再补上28只鸡脚,也就是再有鸡28÷2=14(只),鸡与兔脚数就相等,兔的脚是鸡的脚4÷2=2(倍),于是鸡的只数是兔的只数的2倍.兔的只数是 (100+28÷2)÷(2+1)=38(只). 鸡是
100-38=62(只). 答:鸡62只,兔38只.
当然也可以去掉兔28÷4=7(只).兔的只数是
15