好文档 - 专业文书写作范文服务资料分享网站

高中数学人教版必修直线的两点式方程教案(系列四)

天下 分享 时间: 加入收藏 我要投稿 点赞

3.2.2 直线的两点式方程

一、教材分析

本节课的关键是关于两点式的推导以及斜率k不存在或斜率k=0时对两点式的讨论及变形.直线方程的两点式可由点斜式导出.若已知两点恰好在坐标轴上(非原点),则可用两点式的特例截距式写出直线的方程.由于由截距式方程可直接确定直线与x轴和y轴的交点的坐标,因此用截距式画直线比较方便.在解决与截距有关或直线与坐标轴围成的三角形面积、周长等问题时,经常使用截距式.但当直线与坐标轴平行时,有一个截距不存在;当直线通过原点时,两个截距均为零.在这两种情况下都不能用截距式. 二、教学目标

1.知识与技能

(1)掌握直线方程的两点式的形式特点及适用范围; (2)了解直线方程截距式的形式特点及适用范围。 2.过程与方法

让学生在应用旧知识的探究过程中获得新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点. 3.情态与价值观

(1)认识事物之间的普通联系与相互转化; (2)培养学生用联系的观点看问题。 三、教学重点与难点

教学重点:直线方程两点式和截距式.

教学难点:关于两点式的推导以及斜率k不存在或斜率k=0时对两点式方程的讨论及变形. 四、安排

1 五、教学设计 (一)导入新课

思路1.上节课我们学习了直线方程的点斜式,请问点斜式方程是什么?点斜式方程是怎样推导的?利用点斜式解答如下问题:

(1)已知直线l经过两点P1(1,2),P2(3,5),求直线l的方程.

(2)已知两点P1(x1,y1),P2(x2,y2)(其中x1≠x2,y1≠y2),求通过这两点的直线方程. 思路2.要学生求直线的方程,题目如下: ①A(8,1),B(2,4); ②A(6,4),B(1,2); ③A(x1,y1),B(x2,y2)(x1≠x2).

(分别找3个同学说上述题的求解过程和答案,并着重要求说求k及求解过程) 这个答案对我们有何启示?求解过程可不可以简化?我们可不可以把这种直线方程取一个什么名字呢?

(二)推进新课、新知探究、提出问题

①已知两点P1(x1,y1),P2(x2,y2)(其中x1≠x2,y1≠y2),求通过这两点的直线方程. ②若点P1(x1,y1),P2(x2,y2)中有x1=x2或y1=y2,此时这两点的直线方程是什么? ③两点式公式运用时应注意什么?

④已知直线l与x轴的交点为A(a,0),与y轴的交点为B(0,b),其中a≠0,b≠0,求直线l的方程.

⑤a、b表示截距是不是直线与坐标轴的两个交点到原点的距离? ⑥截距式不能表示平面坐标系下哪些直线?

活动:①教师引导学生:根据已有的知识,要求直线方程,应知道什么条件?能不能把问题转化为已经解决的问题呢?在此基础上,学生根据已知两点的坐标,先判断是否存在斜率,然后求出直线的斜率,从而可求出直线方程.师生共同归纳:

已知直线上两个不同点,求直线的方程步骤: a.利用直线的斜率公式求出斜率k b.利用点斜式写出直线的方程. ∵x1≠x2,k=

y2?y1,

x2?x1y2?y1(xx1).

x2?x1∴直线的方程为yy1=

∴l的方程为yy1=

y2?y1(xx1).①

x2?x1

当y1≠y2时,方程①可以写成

y?y1x?x1.② ?y2?y1x2?x1由于②这个方程是由直线上两点确定的,因此叫做直线方程的两点式.

注意:②式是由①式导出的,它们表示的直线范围不同.①式中只需x1≠x2,它不能表示倾斜角为90°的直线的方程;②式中x1≠x2且y1≠y2,它不能表示倾斜角为0°或90°的直线的方程,但②式相对于①式更对称、形式更美观、更整齐,便于记忆.如果把两点式变成(yy1)(x2x1)=(xx1)(y2y1),那么就可以用它来求过平面上任意两已知点的直线方程.

②使学生懂得两点式的适用范围和当已知的两点不满足两点式的条件时它的方程形式.教师引导学生通过画图、观察和分析,发现当x1=x2时,直线与x轴垂直,所以直线方程为x=x1;当y1=y2时,直线与y轴垂直,直线方程为y=y1.

③引导学生注意分式的分母需满足的条件.

④使学生学会用两点式求直线方程;理解截距式源于两点式,是两点式的特殊情形.教师引导学生分析题目中所给的条件有什么特点?可以用多少方法来求直线l的方程?哪种方法更为简捷?然后求出直线方程.

因为直线l经过(a,0)和(0,b)两点,将这两点的坐标代入两点式,得①

就是

y?0x?a.?b?00?axy?=1.② ab注意:②这个方程形式对称、美观,其中a是直线与x轴交点的横坐标,称a为直线在x轴上的截距,简称横截距;b是直线与y轴交点的纵坐标,称b为直线在y轴上的截距,简称纵截距.

因为方程②是由直线在x轴和y轴上的截距确定的,所以方程②式叫做直线方程的截距式.

⑤注意到截距的定义,易知a、b表示的截距分别是直线与坐标轴x轴交点的横坐标,与y轴交点的纵坐标,而不是距离.

⑥考虑到分母的原因,截距式不能表示平面坐标系下在x轴上或y轴上截距为0的直线的方程,即过原点或与坐标轴平行的直线不能用截距式.

讨论结果:①若x1≠x2且y1≠y2,则直线l方程为

y?y1x?x1. ?y2?y1x2?x1②当x1=x2时,直线与x轴垂直,直线方程为x=x1;当y1=y2时,直线与y轴垂直,直

高中数学人教版必修直线的两点式方程教案(系列四)

3.2.2直线的两点式方程一、教材分析本节课的关键是关于两点式的推导以及斜率k不存在或斜率k=0时对两点式的讨论及变形.直线方程的两点式可由点斜式导出.若已知两点恰好在坐标轴上(非原点),则可用两点式的特例截距式写出直线的方程.由于由截距式方程可直接确定直线与x轴和y轴的交点的坐标,因此用截距式画直线比较方便.在解决与截距有关或直线
推荐度:
点击下载文档文档为doc格式
1i99l9nz2i8wrp7230mk0mq5e7eb5x017up
领取福利

微信扫码领取福利

微信扫码分享