RW为高电平时可以读忙信号,当RS为高电平RW为低电平时可以写入数据。E端为使能端,当E端由高电平跳变成低电平时,液晶模块执行命令。DB0~DB7为8位双向数据线,BLK和BLA是背光灯电源[7]。模块引脚如表4.2-1。
表4.2-1 字符型液晶显示模块引脚
编号 符号 引脚说明 编号 符号 引脚说明 1 VSS 电源地 9 D2 Data I/O 2 VDD 电源正极 10 D3 Data I/O 3 VL 液晶显示偏压信号 11 D4 Data I/O 4 RS 数据/命令 12 D5 Data I/O 5 R/W 读/写 13 D6 Data I/O 6 E 使能信号 14 D7 Data I/O 7 D0 Data I/O 45 BLA 背光源正级 8 D1 Data I/O 16 BLK 背光源负级 4.3 字符型液晶显示模块内部结构
液晶显示模块WM-C1602N的内部结构如图4.3-1分为三部份:一为LCD控制器,二为LCD驱动器,三为LCD显示装置。
图4.3-1 LCD1602内部结构
图4.3-2 液晶接口
5 单片机AT89S52
5.1 AT89S52简介
如图5.1-1所示为AT89S52芯片的引脚图。兼容标准MCS-51指令系统的AT89S52单片机是一个低功耗、高性能CHMOS的单片机,片内含4KB在线可编程Flash存储器的单片机。它与通用80C51系列单片机的指令系统和引脚兼容。
AT89S52单片机片内的Flash可允许在线重新编程,也可用通用非易失性存储编程器编程;片内数据存储器内含128字节的RAM;有40个引脚,32个外部双向输入/输出(I/O)端口;具有两个16位可编程定时器;中断系统是具有6个中断源、5个中断矢量、2级中断优先级的中断结构;震荡器频率0到33MHZ,因此我们在此选用12MHZ的晶振是比较合理的;具有片内看门狗定时器;具有断电标志POF等等。AT89S51具有PDIP、TQFP和PLCC三种封装形式[8]。
图5.1-1 AT89S52引脚图
上图就是PDIP封装的引脚排列,下面介绍各引脚的功能。
5.2 AT89S52引脚说明
P0口:8位、开漏级、双向I/O口。P0口可作为通用I/O口,但须外接上拉电阻;作为输出口,每各引脚可吸收8各TTL的灌电流。作为输入时,首先应将引脚置
1。P0也可用做访问外部程序存储器和数据存储器时的低8位地址/数据总线的复用线。在该模式下,P0口含有内部上拉电阻。在FLASH编程时,P0口接收代码字节数据;在编程效验时,P0口输出代码字节数据(需要外接上拉电阻)。
P1口:8位、双向I/0口,内部含有上拉电阻。P1口可作普通I/O口。输出缓冲器可驱动四个TTL负载;用作输入时,先将引脚置1,由片内上拉电阻将其抬到高电平。P1口的引脚可由外部负载拉到低电平,通过上拉电阻提供电流。在FLASH并行编程和校验时,P1口可输入低字节地址。在串行编程和效验时,P1.5/MO-SI,P1.6/MISO和P1.7/SCK分别是串行数据输入、输出和移位脉冲引脚。
P2口:具有内部上拉电阻的8位双向I/O口。P2口用做输出口时,可驱动4各TTL负载;用做输入口时,先将引脚置1,由内部上拉电阻将其提高到高电平。若负载为低电平,则通过内部上拉电阻向外部输出电流。CPU访问外部16位地址的存储器时,P2口提供高8位地址。当CPU用8位地址寻址外部存储时,P2口为P2特殊功能寄存器的内容。在FLASH并行编程和校验时,P2口可输入高字节地址和某些控制信号。
P3口:具有内部上拉电阻的8位双向口。P3口用做输出口时,输出缓冲器可吸收4各TTL的灌电流;用做输入口时,首先将引脚置1,由内部上拉电阻抬位高电平。若外部的负载是低电平,则通过内部上拉电阻向输出电流。在与FLASH并行编程和校验时,P3口可输入某些控制信号。P3口除了通用I/O口功能外,还有替代功能,如表5.3-1所示。
表5.3-1 P3口的替代功能
引脚 符号 说明 P3.0 RXD 串行口输入 P3.1 TXD 串行口输出 P3.2 /INT0 外部中断0 P3.3 /INT1 外部中断1 P3.4 T0 T0定时器的外部的计数输入 P3.5 T1 T1定时器的外部的计数输入 P3.6 /WR 外部数据存储器的写选通 P3.7 /RD 外部数据存储器的读选通 RST:复位端。当振荡器工作时,此引脚上出现两个机器周期的高电平将系统复位。
ALE/ :当访问外部存储器时,ALE(允许地址锁存)是一个用于锁存地址
)。
的低8位字节的书粗脉冲。在Flash 编程期间,此引脚也可用于输入编程脉冲(
在正常操作情况下,ALE以振荡器频率的1/6的固定速率发出脉冲,它是用作对外输出的时钟,需要注意的是,每当访问外部数据存储器时,将跳过一个ALE脉冲。如果希望禁止ALE操作,可通过将特殊功能寄存器中位地址为8EH那位置的“0”来实现。该位置的“1”后。ALE仅在MOVE或MOVC指令期间激活,否则ALE引脚将
被略微拉高。若微控制器在外部执行方式,ALE禁止位无效。
:外部程序存储器读选取通信号。当AT89S51在读取外部程序时, 每个机
器周期 将PSEN激活两次。在此期间内,每当访问外部数据存储器时,将跳过两个信号。
/Vpp:访问外部程序存储器允许端。为了能够从外部程序存储器的0000H至
FFFFH单元中取指令,必须接地,然而要注意的是,若对加密位1进行编程,则在复位时,
的状态在内部被锁存。
执行内部程序应接VCC。不当选择12V编程电源时,在Flash编程期间,这个
引脚可接12V编程电压。
XTAL1:振荡器反向放大器输入端和内部时钟发生器的输入端。
XTAL2:振荡器反相放大器输出端[9]。 6 软件设计
6.1 系统概述
整个系统的功能是由硬件电路配合软件来实现的,当硬件基本定型后,软件的功能也就基本定下来了。从软件的功能不同可分为两大类:一是监控软件(主程序),它是整个控制系统的核心,专门用来协调各执行模块和操作者的关系。二是执行软件(子程序),它是用来完成各种实质性的功能如测量、计算、显示、通讯等。每一个执行软件也就是一个小的功能执行模块。这里将各执行模块一一列出,并为每一个执行模块进行功能定义和接口定义。各执行模块规划好后,就可以规划监控程序了。
基于单片机的无线多路数据温度采集系统的设计与实现毕业论文



