中考数学压轴题汇编:几何综合(附解析)
(2024年)
1.(2024?无锡)如图,四边形ABCD内接于⊙O,AB=17,CD=10,∠A=90°,cosB=,求AD的长.
解:∵四边形ABCD内接于⊙O,∠A=90°, ∴∠C=180°﹣∠A=90°,∠ABC+∠ADC=180°.
作AE⊥BC于E,DF⊥AE于F,则CDFE是矩形,EF=CD=10. 在Rt△AEB中,∵∠AEB=90°,AB=17,cos∠ABC=, ∴BE=AB?cos∠ABE=∴AE=∴AF=AE﹣EF=
=
, ,
.
﹣10=
∵∠ABC+∠ADC=180°,∠CDF=90°, ∴∠ABC+∠ADF=90°, ∵cos∠ABC=,
∴sin∠ADF=cos∠ABC=.
在Rt△ADF中,∵∠AFD=90°,sin∠ADF=,
∴AD===6.
2.(2024?南京)如图,在四边形ABCD中,BC=CD,∠C=2∠BAD.O是四边形ABCD内一点,且OA=OB=OD.求证: (1)∠BOD=∠C;
(2)四边形OBCD是菱形.
证明:(1)
延长OA到E, ∵OA=OB, ∴∠ABO=∠BAO, 又∠BOE=∠ABO+∠BAO, ∴∠BOE=2∠BAO, 同理∠DOE=2∠DAO,
∴∠BOE+∠DOE=2∠BAO+2∠DAO=2(∠BAO+∠DAO) 即∠BOD=2∠BAD, 又∠C=2∠BAD, ∴∠BOD=∠C; (2)连接OC,
∵OB=OD,CB=CD,OC=OC, ∴△OBC≌△ODC,
∴∠BOC=∠DOC,∠BCO=∠DCO,
∵∠BOD=∠BOC+∠DOC,∠BCD=∠BCO+∠DCO,
∴∠BOC=∠BOD,∠BCO=∠BCD, 又∠BOD=∠BCD, ∴∠BOC=∠BCO, ∴BO=BC,
又OB=OD,BC=CD, ∴OB=BC=CD=DO, ∴四边形OBCD是菱形.
3.(2024?淮安)如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.
(1)试判断直线DE与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.
解:(1)直线DE与⊙O相切.理由如下: 连接OE、OD,如图, ∵AC是⊙O的切线, ∴AB⊥AC, ∴∠OAC=90°,
∵点E是AC的中点,O点为AB的中点, ∴OE∥BC,
∴∠1=∠B,∠2=∠3, ∵OB=OD, ∴∠B=∠3, ∴∠1=∠2, 在△AOE和△DOE中
,
∴△AOE≌△DOE,