好文档 - 专业文书写作范文服务资料分享网站

2017年电大经济数学基础形成性考核册及答案

天下 分享 时间: 加入收藏 我要投稿 点赞

?222???5. 矩阵A?333的秩是( B ). ????444??A.0 B.1 C.2 D.3

三、解答题 1.计算 (1)?所以

AB?AB?2?0?0

?124???4.设矩阵A?2?1,确定?的值,使r(A)最小。 ????110??解

??21??01??1?2?=? ?????53??10??35??02??11??00? ???????0?3??00??00?(2)??124??2?1?????110???2?,?3????????124?

?110?????2?1??

??????2???1????1??3???1????2??3??0?(3)??1254???=?0?

??1????2?23???124??245??1???143???610?

222.计算?1????????1?32????23?1????3?27??解

24??17??3???2???????0?1?4??4???????????0??4?7??当??2?1?0?1?90???4??4??4?

?0???9时,r(A)?2达到最小值。 4?123???124??245??7197??245???122??143???610???7120???610?????????????1?32????23?1????3?27????0?4?7????3?27??2??515??

110=1?????3?2?14???23?1??123??,B??112?A??111???????0?11???011???2?532?5?8545.求矩阵A???1?742??4?112解

1?3??的秩。 0??3?:

?2?532?5?854A???1?742??4?112?2???1????5??3???1????2??4???1????4?→

1?3??0??3??1??,3????????1?742?5?854??2?532??4?1120?3??1??3??????

,求

420??1?7?027?15?63????09?5?21????027?15?63?3.设矩阵

AB。

解 因为

2?1?74???????09?5?2?0000?00?00?2???3????3??4???3????3???2?,?3??0? 1??0??0?AB?AB

3?12322?3∴r(A)?2。

2A?110?1

1?112?(?1)10?10123(?1)2212?26.求下列矩阵的逆矩阵:

123?1?32???

01(1)A??3???1?1??1?解

B?112?0-1-1?0

011011

6

??1?32100??2???1??3?AI????301010????3????1?????1????11?1001?????1?32100??0?97310??2???3??2

?1???????04?3?10????1?32100??3???2??4?0?11112????2??????1????3?101??04????1?32100??1???3????2??01?1?1?1?2??????2????3???1?

?001349????1?30?5?8?18??010237????1????2???3???001349?????100113??113??010237? ∴

A?1?????237?

?001349???349??????13?6?3?(2)A =???4?2?1?. ???211??解

???13?6?3100??AI????4?2?1010????1????2?????3????211001??????1001?30???4?2?1010???→ ?211001???2???1????4??3???1??2???????100?130??1????1??0?2?1?4130???0112?61????100?130?????2?,??3?????0112?61?2?1?4130?→

??0????100?13???3????2???2??0??0112?61?????2????3?????1????001012????100?130??0102?7?1? ???001012???∴A-

1 =??130??2?7?1?

???012??7.设矩阵

A??12???,B??12??23,求解矩阵方程

?35????XA?B.

?AI????1210??3501?????2????1?????3????1210??0?1?31???1???2??2???2??????1????10?52??013?1?

? ∴

A?1????52??3?1?

?∴

X?BA?1???12???52? = ??23??????10?3?1??11? ??四、证明题

1.试证:若B1,B2都与A可交换,则B1?B2,B1B2也与A可交换。

证:∵B1A?AB1, B2A?AB2

?B1?B2?A?B1A?B2A?AB1?AB2?A?B1?B2?

即 B1?B2也与A可交换。

?B1B2?A?B1?B2A??B1?AB2???B1A?B2?A?B1B2?

B1B2也与A可交换.

2.试证:对于任意方阵A,A?AT,AAT,ATA是对称矩

阵。

7

证:∵?A?A?TT?A?AT??TT?A?A?A?ATT

3.设某商品的需求函数为

q(p)?10e?p2,则需求弹性

A?AT是对称矩阵。

∵(AAT)T=

?AT?T?AT?AAT

∴AAT是对称矩阵。

∵?ATA?T?AT??AT?T?ATA

∴ATA是对称矩阵.

3.设

A,B均为n阶对称矩阵,则AB对称的充分必要条件是:

AB?BA。

证: 必要性:

∵AT?A , BT?B 若AB是对称矩阵,即

?AB?T?AB

?AB??BTAT?BA 因此AB?BA

充分性: 若AB?BA,则?AB?T?BTAT?BA?AB ∴AB是对称矩阵.

4.设

A为n阶对称矩阵,B为n阶可逆矩阵,且B?1?BT,

证明B?1AB是对称矩阵。

证:∵AT?A B?1?BT

?B?1AB?T??AB?T??B?1?T?BT?AT??BT?T?B?1AB∴B?1AB是对称矩阵. 证毕.

《经济数学基础》形成性考核册(四)

(一)填空题 1.函数

f(x)?4?x?1lnx?(1)的定义域为

_______________。

_答案:(1,2)??2,4?. 2. 函数

y?3(x?1)2的驻点是

_______,

_极值点是 ,它是极 值点。答案:x=1;(1,0);小。

E .答案:Epp? p=?2

4.行列式

111D??111?____________.答案:4.

?1?115. 设线性方程组

AX?b,且

?1116?A???0?132?,则

?0t?10??0??t__________时,方程组有唯一解. 答案:t??1.

(二)单项选择题

1. 下列函数在指定区间(??,??)上单调增加的是( B ). A.sinx B.e x C.x 2

D.3 – x 2. 设

f(x)?1x,则

f(f(x))?( C ). A.

1x B.

1x2 C.x D.x2

3. 下列积分计算正确的是( A ).

1xA.

e?e?x?1?12dx?0 B.

ex?e?x??12dx?0 C.

?1-1xsinxdx?0

D.

?1-1(x2?x3)dx?0

4. 设线性方程组

Am?nX?b有无穷多解的充分必要条件是

( D ).

A.

r(A)?r(A)?m B.r(A)?n C.m?n D.r(A)?r(A)?n

?5. 设线性方程组?x1?x2?a1?x2?x?3?a2,则方程组有解的充分?x1?2x2?x3?a3必要条件是( C ).

A.a1?a2?a3?0 B.a1?a2?a3?0 C.a1?a2?a3?0 D.?a1?a2?a3?0

三、解答题

1.求解下列可分离变量的微分方程: (1)

y??ex?y

8

解:

dy?ex?eydx ,

e?ydy?exdx e0??e?ydy??exdx , ?e?y?ex?c

101e?c, 解得c? 2212x1y ∴特解为:e?e?

22 (2)xy??解:

dyxex(2)?2dx3y解

:

y?ex?0,y(1)?0

11y?ex xxy??3y2dy?xexdx

2x3ydy?xde??

y3?xex??exdx y3?xex?ex?c

2. 求解下列一阶线性微分方程:

(1)y??2x?1y?(x?1)3 ????2???2解

:

y?e??x?1??dx????x?1?3e?x?1dxdx?c??????e2ln?x?1????x?1?3e?2ln?x?1?dx?c???x?1?2???x?1?dx?c?

??x?1?2??1?2?x?1?2?c???

(2)y??yx?2xsin2x ???解:

y??1?e??x??dx???1?????2xsin2x?e????x??dxdx?c????elnx??2xsin2x?e?lnxdx?c?

?x????2xsin2x?1xdx?c????x??sin2xd2x?c?

?x??cos2x?c?

3.求解下列微分方程的初值问题: (1)

y??e2x?y,y(0)?0

dye2x解:dx?ey

?eydy??e2xdx

ey?12x2e?c 用x?0,y?0代入上式得:

y?e??1

xdx??ex???1xdxx?edx?c???

??

?e?lnx????1x?ex?elnxdx?c???

?1x??exdx?c??1?exx?c?

用x?1,y?0代入上式得:

0?e?c 解得:c??e

∴特解为:y?1x?ex?c? 4.求解下列线性方程组的一般解:

?x?2x3?x4?0(1)?1??x1?x2?3x3?2x4?0

??2x1?x2?5x3?3x4?0解

??102?1??2???1??1A=

??11?32????3????1?????2???3??2?15?????102?1???01?11?????3????2???1???102?1??01?11???0?11?1????0000? ??所以一般解为

??x1??2x3?x4 ?x2?x 其中x3,x4是自由未知量。 3?x4

?2x1?x2?x3?x4?(2)?1?x1?2x2?x3?4x4?2

??x1?7x2?4x3?11x4?5解

9

?2?1111?A???12?142?????1?,??2????5??17?411????12?142??2???1????2??2?1111????3????1?????1???17?4115??????12?142??0?53?7?3? ??05?373??????????12?142??3???2??1??2?????1??0?53?7?3?????5?????00000?????12?14?01?3723???00055????1????2?????2????050????10164??55?75?3??01?3055?0005?0? ?????因为秩

?A??秩?A?=2,所以方程组有解,一般解为

??x4161??5?5x3?5x4 ??x3372?5?5x3?5x4其中x3,x4是自由未知量。

5.当?为何值时,线性方程组

??x1?x2?5x3?4x4?2??2x1?x2?3x3?x4?1x ?3x1?2x2?2x3?34?3??7x1?5x2?9x3?10x4??有解,并求一般解。 解

??1?1?542??2???1????2??A??2?13?11??3???1????3?4???1????3???3?2?233????????7?5?910?????1?1?542??0113?9?3???0113?9?3?? ?0226?18??14????3???2????1??1?1?542????4????2?????2???0113?9?3???00000???0000??8???08?5?1???1??1????2??1??0113?9?3???00000?? ?0000??8?? 可见当??8时,方程组有解,其一般解为

??x1??1?8x3?5x4 其中

?x3,x4是自由未

2??3?13x3?9xx4知量。

6.a,b为何值时,方程组

??x1?x2?x3?1?x1?x2?2x3?2 ??x1?3x2?ax3?b有唯一解、无穷多解或无解。 解

?1?1?11??2???1???1?A???11?22????3????1?????1?????13ab????1?1?11??02?11????3????2?????2????04a?1b?1?????1?1?11??02?11?

?0a?3b?3??0??根据方程组解的判定定理可知:

10

1hnzw7mgix3x5if1klmb9gaib47veh009nd
领取福利

微信扫码领取福利

微信扫码分享