?222???5. 矩阵A?333的秩是( B ). ????444??A.0 B.1 C.2 D.3
三、解答题 1.计算 (1)?所以
AB?AB?2?0?0
?124???4.设矩阵A?2?1,确定?的值,使r(A)最小。 ????110??解
:
??21??01??1?2?=? ?????53??10??35??02??11??00? ???????0?3??00??00?(2)??124??2?1?????110???2?,?3????????124?
?110?????2?1??
??????2???1????1??3???1????2??3??0?(3)??1254???=?0?
??1????2?23???124??245??1???143???610?
222.计算?1????????1?32????23?1????3?27??解
24??17??3???2???????0?1?4??4???????????0??4?7??当??2?1?0?1?90???4??4??4?
?0???9时,r(A)?2达到最小值。 4?123???124??245??7197??245???122??143???610???7120???610?????????????1?32????23?1????3?27????0?4?7????3?27??2??515??
110=1?????3?2?14???23?1??123??,B??112?A??111???????0?11???011???2?532?5?8545.求矩阵A???1?742??4?112解
1?3??的秩。 0??3?:
?2?532?5?854A???1?742??4?112?2???1????5??3???1????2??4???1????4?→
1?3??0??3??1??,3????????1?742?5?854??2?532??4?1120?3??1??3??????
,求
420??1?7?027?15?63????09?5?21????027?15?63?3.设矩阵
AB。
解 因为
2?1?74???????09?5?2?0000?00?00?2???3????3??4???3????3???2?,?3??0? 1??0??0?AB?AB
3?12322?3∴r(A)?2。
2A?110?1
1?112?(?1)10?10123(?1)2212?26.求下列矩阵的逆矩阵:
123?1?32???
01(1)A??3???1?1??1?解
:
B?112?0-1-1?0
011011
6
??1?32100??2???1??3?AI????301010????3????1?????1????11?1001?????1?32100??0?97310??2???3??2
?1???????04?3?10????1?32100??3???2??4?0?11112????2??????1????3?101??04????1?32100??1???3????2??01?1?1?1?2??????2????3???1?
?001349????1?30?5?8?18??010237????1????2???3???001349?????100113??113??010237? ∴
A?1?????237?
?001349???349??????13?6?3?(2)A =???4?2?1?. ???211??解
:
???13?6?3100??AI????4?2?1010????1????2?????3????211001??????1001?30???4?2?1010???→ ?211001???2???1????4??3???1??2???????100?130??1????1??0?2?1?4130???0112?61????100?130?????2?,??3?????0112?61?2?1?4130?→
??0????100?13???3????2???2??0??0112?61?????2????3?????1????001012????100?130??0102?7?1? ???001012???∴A-
1 =??130??2?7?1?
???012??7.设矩阵
A??12???,B??12??23,求解矩阵方程
?35????XA?B.
解
:
?AI????1210??3501?????2????1?????3????1210??0?1?31???1???2??2???2??????1????10?52??013?1?
? ∴
A?1????52??3?1?
?∴
X?BA?1???12???52? = ??23??????10?3?1??11? ??四、证明题
1.试证:若B1,B2都与A可交换,则B1?B2,B1B2也与A可交换。
证:∵B1A?AB1, B2A?AB2
∴
?B1?B2?A?B1A?B2A?AB1?AB2?A?B1?B2?
即 B1?B2也与A可交换。
?B1B2?A?B1?B2A??B1?AB2???B1A?B2?A?B1B2?
即
B1B2也与A可交换.
2.试证:对于任意方阵A,A?AT,AAT,ATA是对称矩
阵。
7
证:∵?A?A?TT?A?AT??TT?A?A?A?ATT
3.设某商品的需求函数为
q(p)?10e?p2,则需求弹性
∴
A?AT是对称矩阵。
∵(AAT)T=
?AT?T?AT?AAT
∴AAT是对称矩阵。
∵?ATA?T?AT??AT?T?ATA
∴ATA是对称矩阵.
3.设
A,B均为n阶对称矩阵,则AB对称的充分必要条件是:
AB?BA。
证: 必要性:
∵AT?A , BT?B 若AB是对称矩阵,即
?AB?T?AB
而
?AB??BTAT?BA 因此AB?BA
充分性: 若AB?BA,则?AB?T?BTAT?BA?AB ∴AB是对称矩阵.
4.设
A为n阶对称矩阵,B为n阶可逆矩阵,且B?1?BT,
证明B?1AB是对称矩阵。
证:∵AT?A B?1?BT
?B?1AB?T??AB?T??B?1?T?BT?AT??BT?T?B?1AB∴B?1AB是对称矩阵. 证毕.
《经济数学基础》形成性考核册(四)
(一)填空题 1.函数
f(x)?4?x?1lnx?(1)的定义域为
_______________。
_答案:(1,2)??2,4?. 2. 函数
y?3(x?1)2的驻点是
_______,
_极值点是 ,它是极 值点。答案:x=1;(1,0);小。
E .答案:Epp? p=?2
4.行列式
111D??111?____________.答案:4.
?1?115. 设线性方程组
AX?b,且
?1116?A???0?132?,则
?0t?10??0??t__________时,方程组有唯一解. 答案:t??1.
(二)单项选择题
1. 下列函数在指定区间(??,??)上单调增加的是( B ). A.sinx B.e x C.x 2
D.3 – x 2. 设
f(x)?1x,则
f(f(x))?( C ). A.
1x B.
1x2 C.x D.x2
3. 下列积分计算正确的是( A ).
1xA.
e?e?x?1?12dx?0 B.
ex?e?x??12dx?0 C.
?1-1xsinxdx?0
D.
?1-1(x2?x3)dx?0
4. 设线性方程组
Am?nX?b有无穷多解的充分必要条件是
( D ).
A.
r(A)?r(A)?m B.r(A)?n C.m?n D.r(A)?r(A)?n
?5. 设线性方程组?x1?x2?a1?x2?x?3?a2,则方程组有解的充分?x1?2x2?x3?a3必要条件是( C ).
A.a1?a2?a3?0 B.a1?a2?a3?0 C.a1?a2?a3?0 D.?a1?a2?a3?0
三、解答题
1.求解下列可分离变量的微分方程: (1)
y??ex?y
8
解:
dy?ex?eydx ,
e?ydy?exdx e0??e?ydy??exdx , ?e?y?ex?c
101e?c, 解得c? 2212x1y ∴特解为:e?e?
22 (2)xy??解:
dyxex(2)?2dx3y解
:
y?ex?0,y(1)?0
11y?ex xxy??3y2dy?xexdx
2x3ydy?xde??
y3?xex??exdx y3?xex?ex?c
2. 求解下列一阶线性微分方程:
(1)y??2x?1y?(x?1)3 ????2???2解
:
y?e??x?1??dx????x?1?3e?x?1dxdx?c??????e2ln?x?1????x?1?3e?2ln?x?1?dx?c???x?1?2???x?1?dx?c?
??x?1?2??1?2?x?1?2?c???
(2)y??yx?2xsin2x ???解:
y??1?e??x??dx???1?????2xsin2x?e????x??dxdx?c????elnx??2xsin2x?e?lnxdx?c?
?x????2xsin2x?1xdx?c????x??sin2xd2x?c?
?x??cos2x?c?
3.求解下列微分方程的初值问题: (1)
y??e2x?y,y(0)?0
dye2x解:dx?ey
?eydy??e2xdx
ey?12x2e?c 用x?0,y?0代入上式得:
y?e??1
xdx??ex???1xdxx?edx?c???
??
?e?lnx????1x?ex?elnxdx?c???
?1x??exdx?c??1?exx?c?
用x?1,y?0代入上式得:
0?e?c 解得:c??e
∴特解为:y?1x?ex?c? 4.求解下列线性方程组的一般解:
?x?2x3?x4?0(1)?1??x1?x2?3x3?2x4?0
??2x1?x2?5x3?3x4?0解
:
??102?1??2???1??1A=
??11?32????3????1?????2???3??2?15?????102?1???01?11?????3????2???1???102?1??01?11???0?11?1????0000? ??所以一般解为
??x1??2x3?x4 ?x2?x 其中x3,x4是自由未知量。 3?x4
?2x1?x2?x3?x4?(2)?1?x1?2x2?x3?4x4?2
??x1?7x2?4x3?11x4?5解
:
9
?2?1111?A???12?142?????1?,??2????5??17?411????12?142??2???1????2??2?1111????3????1?????1???17?4115??????12?142??0?53?7?3? ??05?373??????????12?142??3???2??1??2?????1??0?53?7?3?????5?????00000?????12?14?01?3723???00055????1????2?????2????050????10164??55?75?3??01?3055?0005?0? ?????因为秩
?A??秩?A?=2,所以方程组有解,一般解为
??x4161??5?5x3?5x4 ??x3372?5?5x3?5x4其中x3,x4是自由未知量。
5.当?为何值时,线性方程组
??x1?x2?5x3?4x4?2??2x1?x2?3x3?x4?1x ?3x1?2x2?2x3?34?3??7x1?5x2?9x3?10x4??有解,并求一般解。 解
:
??1?1?542??2???1????2??A??2?13?11??3???1????3?4???1????3???3?2?233????????7?5?910?????1?1?542??0113?9?3???0113?9?3?? ?0226?18??14????3???2????1??1?1?542????4????2?????2???0113?9?3???00000???0000??8???08?5?1???1??1????2??1??0113?9?3???00000?? ?0000??8?? 可见当??8时,方程组有解,其一般解为
??x1??1?8x3?5x4 其中
?x3,x4是自由未
2??3?13x3?9xx4知量。
6.a,b为何值时,方程组
??x1?x2?x3?1?x1?x2?2x3?2 ??x1?3x2?ax3?b有唯一解、无穷多解或无解。 解
:
?1?1?11??2???1???1?A???11?22????3????1?????1?????13ab????1?1?11??02?11????3????2?????2????04a?1b?1?????1?1?11??02?11?
?0a?3b?3??0??根据方程组解的判定定理可知:
10
2017年电大经济数学基础形成性考核册及答案



