1.1分类加法计数原理和分步乘法计数原理
教学目标:
知识与技能:①理解分类加法计数原理与分步乘法计数原理;
②会利用两个原理分析和解决一些简单的应用问题;
过程与方法:培养学生的归纳概括能力;
情感、态度与价值观:引导学生形成 “自主学习”与“合作学习”等良好的学习方式 教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理) 教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解 授课类型:新授课 课时安排:2课时 教 具:多媒体、实物投影仪 教学过程: 引入课题
先看下面的问题:
①从我们班上推选出两名同学担任班长,有多少种不同的选法?
②把我们的同学排成一排,共有多少种不同的排法? 要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法. 总的来说,就是研究按某一规则做某事时,一共有多少种不同的做法. 在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理.
1 分类加法计数原理 (1)提出问题
问题1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?
问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?
探究:你能说说以上两个问题的特征吗? (2)发现新知
分类加法计数原理 完成一件事有两类不同方案,在第1类方案中有在第2类方案中有
n种不同的方法. 那么完成这件事共有
m种不同的方法,
N?m?n 种不同的方法. (3)知识应用
例1.在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:
A大学 B大学 生物学 数学 化学 会计学 医学 信息技术学 物理学 法学 工程学
如果这名同学只能选一个专业,那么他共有多少种选择呢?
分析:由于这名同学在 A , B 两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择 A , B 两所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有
5+4=9(种).
变式:若还有C大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?
探究:如果完成一件事有三类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,在第3类方案中有m3种不同的方法,那么完成这件事共有多少种不同的方法?
如果完成一件事情有n类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?
一般归纳:
完成一件事情,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有mn种不同的方法.那么完成这件事共有
N?m1?m2?????mn
种不同的方法.
理解分类加法计数原理:
分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事. 2 分步乘法计数原理 (1)提出问题
问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以A1,A2,…,B1,B2,…的方式给教室里的座位编号,总共能编出多少个不同的号码?
用列举法可以列出所有可能的号码:
我们还可以这样来思考:由于前 6 个英文字母中的任意一个都能与 9 个数字中的任何一个组成一个号码,而且它们各不相同,因此共有 6×9 = 54 个不同的号码.
探究:你能说说这个问题的特征吗? (2)发现新知
分步乘法计数原理 完成一件事有两类不同方案,在第1类方案中有法,在第2类方案中有
n种不同的方法. 那么完成这件事共有
m种不同的方
N?m?n 种不同的方法. (3)知识应用
例2.设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?
分析:选出一组参赛代表,可以分两个步骤.第 l 步选男生.第2步选女生. 解:第 1 步,从 30 名男生中选出1人,有30种不同选择; 第 2 步,从24 名女生中选出1人,有 24 种不同选择. 根据分步乘法计数原理,共有 30×24 =720种不同的选法.
探究:如果完成一件事需要三个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第3步有m3种不同的方法,那么完成这件事共有多少种不同的方法? 如果完成一件事情需要n个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢?
一般归纳:
完成一件事情,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步有mn种不同的方法.那么完成这件事共有
N?m1?m2?????mn种不同的方法.
理解分步乘法计数原理:
分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事. 3.理解分类加法计数原理与分步乘法计数原理异同点 ①相同点:都是完成一件事的不同方法种数的问题
②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成. 3 综合应用
例3. 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.
①从书架上任取1本书,有多少种不同的取法?
②从书架的第1、2、3层各取1本书,有多少种不同的取法? ③从书架上任取两本不同学科的书,有多少种不同的取法? 【分析】
①要完成的事是“取一本书”,由于不论取书架的哪一层的书都可以完成了这件事,因此是分类问题,应用分类计数原理.
②要完成的事是“从书架的第1、2、3层中各取一本书”,由于取一层中的一本书都只完成了这件事的一部分,只有第1、2、3层都取后,才能完成这件事,因此是分步问题,应用分步计数原理.
③要完成的事是“取2本不同学科的书”,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这
件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.
解: (1) 从书架上任取1本书,有3类方法:第1类方法是从第1层取1本计算机书,有4 种方法;第2 类方法是从第2 层取1本文艺书,有3 种方法;第3类方法是从第 3 层取 1 本体育书,有 2 种方法.根据分类加法计数原理,不同取法的种数是
N?m1?m2?m3=4+3+2=9; ( 2 )从书架的第 1 , 2 , 3 层各取 1 本书,可以分成3个步骤完成:第 1 步从第 1 层取 1 本计算机书,有 4 种方法;第 2 步从第 2 层取1本文艺书,有 3 种方法;第 3 步从第3层取1 本体育书,有 2 种方法.根据分步乘法计数原理,不同取法的种数是
N?m1?m2?m3=4×3×2=24 . (3)N?4?3?4?2?3?2?26。
例4. 要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?
解:从 3 幅画中选出 2 幅分别挂在左、右两边墙上,可以分两个步骤完成:第 1 步,从 3 幅画中选 1 幅挂在左边墙上,有 3 种选法;第 2 步,从剩下的 2 幅画中选 1 幅挂在右边墙上,有 2 种选法.根据分步乘法计数原理,不同挂法的种数是
N=3×2=6 .