第一章 函数、极限和连续
注:补充例题或习题已在题号前标注*
一、函数
?1,1?2例1(1)求函数f?x??ln?x?2??的定义域.(2)求函数f?x???1?x2x?1?3x?2,?例2设函数g?x??x?2,f??g?x????ln?x?2?,则f?1?? . 例3已知f?x??ln?1?x?,f????x????x,求??x?. 例4若??x?22?x?3的定义域.
?1????x?x?1,则??x?? . x例5已知f?x?的定义域为全体实数,f?x?1??x?x?1?,则f?x?1?? . 例6判断函数f?x??lgx??x2?1的奇偶性.
?二、极限
例1求下列各题的极限
x2?1?1x3?3x2?2x2??1limlim?(1)lim.(2).(3)??.(4)xlim2x?0x??2x?1x?1???sin2x2x?1x2?x?6??例2设当x?0,1?ax2?1与sinx是等价无穷小,则a? . 2?x2?2x?x2?x.
?例3当x?0时,下列变量与x为等价无穷小量的是( ). A.sin2x B.1?cosx C.1?x?1?x D.xsinx 例4求下列各题的极限 (1)limtan2xtanx?sinx.(2)lim. 3x?0sin5xx?0sinx1?12x例5求下列各题的极限
?1?(1)lim??x?01?x???x?2?.(2)lim??x???x?x1x3x?2?x?1?.(3)lim??x??x?1??x2x?42?x?a?.(4)lim??(其中a为常数). x??x?2a??x*例5求下列各题的极限 (1)lim??a?b?c?1?1?tanx?1?sinx?.(2).(3). limcoslim???2x??x?0x?0x?3?x1?sinx?x??xx
例6求下列各题的极限
x2cosxsinx(1)lim.(2)lim3.
x??x?x?1x??x1 / 15
例7求lim?n???12?n?1?1n2?2?...???. 2n?n?1例8在下列函数中,当x?0时,函数f?x?极限存在的是( ).
?x?1,?A.f?x???0,?x?1,??x?,x?0 B. f?x???x?1,x?0?x?0?1?2?x,?x?0 C. f?x???0,?1x?0?x?,2?x?0x?0 D.f?x??ex?01x
2n?a0xn?a1xn?1?...?an?1x?an?1例9(1)lim?2?2?...?2?.(2)lim. mm?1n??nx??nnbx?bx?...?bx?b??01m?1m(3)lim2sinn???nx1?cos2x.(4). limx?0xsin2x2nx2?kx?3x2?ax?b?4,求常数k的值.(6)已知lim2?2,求常数a,b的值. (5)已知limx?3x?2x?x?2x?3三、函数的连续性
?1?xsinx,?例1设函数f?x???k,?1?xsin?1,x??x?2,?2例2设函数f?x???x?a,?bx,?
x?0x?0在其定义域内连续,求常数k的值. x?0x?00?x?1在???,???上连续,求常数a,b的值. x?1x?00?x?1,讨论f?x?的间断点及其类型. 1?x?2?x2?1,?例3设函数f?x???x,?2?x,?例4求下列函数的间断点并说明间断点类型
1?x?1?x2x2?1(1)f?x??2.(2)f?x??.
2xx?3x?2例5证明方程4x?2在?0,?内至少有一个实根.
x例6设f?x??e?2,求证f?x?在?0,2?内至少有一个点x0,使e0?2?x0.
xx??1?2?第二章 一元函数微分学
一、导数与微分
2 / 15
例1设y?f?x?在x0处可导,则limh?0f?x0?2h??f?x0?? ; h?x?0limf?x0??x??f?x0??x?? . ?x例2求下列函数的导数
(1)y?1?lnx.(2)y?arctane.(3)y?sin2x?sec2(5)y?f?x????x???,其中f?u?及??x?均可导.
2x32?e?.(4)y?2x2?1lnxx.
?n?n???flnx??fx?afx?a(6)已知f?u?可导,求????、????和??????.
????(7)设y?f??x?1?2?,f??x??arctanx,求y?x?0. ?x?1?1?sin2x(8)设f?x?为二阶可导函数,且f?tanx??,求f???x?. 2cosx例3函数f?x???x?0??x,在x?0处是否连续,是否可导,为什么?
??ln?1?x?,x?0??cosx,x???2例4设函数f?x???
????x?,x???22(1)f?x?在x?
?2
处是否可导?(2)若可导,求曲线过点????,0?处的切线、法线方程. 2???x2,x?1例5设函数f?x???在x?1处可导,求常数a,b的值.
ax?b,x?1?例6设曲线y?x?x?2上存在切线与直线y?4x?1平行,求切点. 例7设函数y?f?x?由方程sinx?y?xy确定,求
23??dy. dxdydx.
x?0例8设函数y?f?x?由方程x?y?3xy?1确定,求
33x2例9设函数y?1?x3x?2?x?2?x22,求y?.
例10设函数y??sinx?,求y?.
3 / 15