好文档 - 专业文书写作范文服务资料分享网站

河北省2024届高三上学期第一次月考数学(理)试题(普通部)

天下 分享 时间: 加入收藏 我要投稿 点赞

2024学年上学期高三第一次月考

数 学 试 题(理科)

一、选择题:本大题共12小题,每小题5分. 在每小题给出的四个选项中,选出符合题目要求的一项.

1.已知集合A?xlnx?0,集合B?x?N(x?1)(x?5)?0,则AIB?( ) A. ?0,1,2,3,4,5? C. ?1,2,3,4?

2.在区间(??,0)上为增函数的是 ( )

?2?A. y??? B. y?log1x C. y??(x?1)2 D. y?log2(?x)

?3?33x????B. ?1,2,3,4,5? D. ?2,3,4,5?

3.若log2a?1,则a的取值范围是 ( )

3A. 0?a?2222 B. a? C. ?a?1 D. 0?a?或a?1

3333224.已知 “命题p:(x?m)?3(x?m)”是“命题q:x?3x?4?0”成立的必要不充分条件,则实数m的取值范围为 ( ) A.m?1或m??7 B.m?1或m??7 C.?7?m?1 D.?7?m?1

f(x1)?f(x2)?(3a?2)x?4a,x?1?0, f(x)?x,x?(??,??), 对任意12,都有5. 已知?x?x12?logax,x?1那么实数a的取值范围是 A.(0,1) 6.函数f?x??A.

7.已知函数f(x)?ln(|x|)?cosx,以下哪个是f(x)的图象

B. (0,) C.?23?11,) 7?3

D. [,)

2273lnx在区间(0,3)上的最大值为( ) x

B.1

C.2

D.e

1 e

A. B.

C. D.

???上单调递增,且y?f?x?1?的图象关于x?18已知定义在R上的函数f?x?在区间[0,对称,若实数a满足f?log2a?<f?2?,则a的取值范围是( ) A. ?0,?

??1?4?B. ??1?,??? ?4?C. ??1?,4? ?4?D. ?4,???

9.已知f(x)是定义在R上的偶函数,且f(x+3)=f(x-1).若当x?[?2,0]时,f(x)?3?x?1, f(2024)= A.6

?B.4

? C.2 D.1

10. 命题“?n?N,f(n)?N且f(n)?n”的否定形式是( )

A.?n?N,f(n)?N且f(n)?n B.?n?N,f(n)?N或f(n)?n

????C.?n0?N,f(n0)?N且f(n0)?n0 D.?n0?N,f(n0)?N或f(n0)?n0

?????ax?a,x?011. 若函数f(x)??的图象上有且仅有两对点关于原点对称,则实数a的取值

xlnx,x?0?范围是( )

A.(0,) B.(0,)U(1,e) C.(1,??) D.(0,1)U(1,??)

12.设min{m,n}表示m,n二者中较小的一个, 已知函数f?x??x?8x?14,

21e1e

x?2????1??g(x)?min???,log24x?(x>0).若?x1???5,a??a??4?,?x2?(0,?),使得

????2??f(x1)?g(x2)成立,则a的最大值为( )

A.-4

B.-3

C.-2

D.0

二、填空题:本大题共4小题,每小题5分,共20分,把答案填在横线上 13. 函数f(x)?xsinx?2cosx在(0,f(0))处的切线方程为_______.

9x?f(log14. 已知f(x)为R上增函数,且对任意x∈R,都有f?,则f(x)-3=43) ??= . 15.如果函数则称函数

是在

上存在

满足

,是

上“双中值函

上的“双中值函数”,已知函数

数”,则实数的取值范围是______. 16. 设函数f?x???x?a??lnx?2a22??2,其中x?0,a?R,存在x0使得f?x0??4成5立,则实数a的值为 .

三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。 17.(本小题满分10分)

已知全集U=R,集合A?xa?1?x?2a?1, B?x0?x?1. (1)若a?

????1

,求A∩B; 2

(2)若A∩B=?,求实数a的取值范围.

18.(本小题满分12分)

设f?x??loga?1?x??loga?3?x??a?0,a?1?,且f?1??2. (1)求a的值及f(x)的定义域; ?3?(2)求f(x)在区间?0,?上的最大值. ?2?

19.(本小题满分12分)

2g(x)?ax?2ax?1?b(a?0)在区间?2,3?上有最大值4和最小值1.设已知函数

f(x)?g(x)x.

(I)求a,b的值;

xxf(2)?k?2?0在x?[?1,1]上有解,求实数k的取值范围. (II)若不等式

20. (本小题满分12分)

2已知p:?x??0,???,x?2elnx?m;q:函数y?x?2mx?1有两个零点.

2(1)若p?q为假命题,求实数m的取值范围;

(2)若p?q为真命题,p?q为假命题,求实数m的取值范围.

21.(本小题满分12分) 已知函数f?x??x?alnx. 2(1)当a??2时,求函数f(x)的单调递减区间; (2)若函数g?x??f?x?? 22.(本小题满分12分) 已知函数f?x??2alnx?x.

22在[1,+∞)上单调,求实数a的取值范围. x(1)讨论函数f(x)的单调性;

(2)当a?0时,求函数f(x)在区间1,e?2?上的零点个数.

2024学年度上学期高三第一次月考

数学试题(理科)参考答案

一. DDBB DABC BDDC 二.13. y??2 14.10 15. 【答案】【详解】在区间满足方程令

在区间,

存在,

有两个不相等的解

则,解得:

实数的取值范围是 16.

1 5?2?11??三.17.解 (1)若a=2,则A=?x|??x?2? 又B={x|0

∴a≤-2,此时满足A∩B=?; …………6分 当A≠?时,则由A∩B=?,B={x|0

??2a+1>a-1,易得?

??a-1≥1

??2a+1>a-1,

或???2a+1≤0,

1

∴a≥2或-2

2

???1

综上可知,实数a的取值范围为?a?a≤-或a≥2

2???

??

?. …………10分 ??

18.解析:(1)∵f(1)=2,∴loga4=2(a>0,a≠1),∴a=2.

?1+x>0,?

由???3-x>0,

得x∈(-1,3),

河北省2024届高三上学期第一次月考数学(理)试题(普通部)

2024学年上学期高三第一次月考数学试题(理科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合A?xlnx?0,集合B?x?N(x?1)(x?5)?0,则AIB?()A.?0,1,2,3,4,5?C.?1,2,3,4
推荐度:
点击下载文档文档为doc格式
1gyzt4xmkf3jk4h7sglc72h8v7sa9700vi9
领取福利

微信扫码领取福利

微信扫码分享