空间点、直线、平面之间的位置关系
平面
知识梳理
1 平面含义:平面是无限延展的 2 三个公理:
(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 符号表示为
A∈l
αB∈l => l?? A∈? B∈?
【公理1作用】判断直线是否在平面内.
A L
(2)公理2:过不在一条直线上的三点,有且只有一个平面。 A αC B 符号表示为:A、B、C三点不共线 => 有且只有一个平面α, 使A∈α、B∈α、C∈α。
【公理2作】确定一个平面的依据。
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P∈α∩β =>α∩β=L,且P∈L 【公理3作用】判定两个平面是否相交的依据.
知能训练
βP
L
α
一.选择题
1.已知m,n分别是两条不重合的直线,a,b分别垂直于两不重合平面α,β,有以下四个命题:
①若m⊥α,n∥b,且α⊥β,则m∥n; ②若m∥a,n∥b,且α⊥β,则m⊥n;
③若m∥α,n∥b,且α∥β,则m⊥n; ④若m⊥α,n⊥b,且α⊥β,则m∥n. 其中真命题的序号是( )
A.①② B.③④ C.①④ D.②③
2.在下列命题中,不是公理的是( )
A.平行于同一个平面的两个平面平行
B.过不在同一直线上的三个点,有且只有一个平面
C.如果一条直线上的两点在同一个平面内,那么这条直线上所有点都在此平面内
D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
3.l1,l2,l3是空间三条不同的直线,则下列命题正确的是( )
A.l1⊥l2,l2⊥l3?l1∥l3
B.l1⊥l2,l2∥l3?l1⊥l3
C.l1∥l2∥l3?l1,l2,l3共面