【总结】本题是理论联系实际的题目,同时题目中提出了示波管灵敏度这一新概念,首先需要搞清这一新概念,然后应用牛顿第二定律及运动学公式加以求解。
四、根据运动轨迹分析有关问题
该种类型的题目分析方法是:先画出入射点轨迹的切线,即画出初速度v0的方向,再根据轨迹的弯曲方向,确定电场力的方向,进而利用力学分析方法来分析其它有关的问题。 例6:在图8-7甲中,虚线表示真空里一点电荷Q的电场中的两个等势面,实线表示一个带负电q的粒子运动的路径,不考虑粒子的重力,请判定 (1)Q是什么电荷?
(2)ABC三点电势的大小关系; (3)ABC三点场强的大小关系;
(4)该粒子在ABC三点动能的大小关系。 【审题】
A、B、C是带电粒子在电场中运动轨迹上的三点,通过轨迹的弯曲方向得出受力方向,由受力方向判断Q的电性,
画出电场线,判断电势的高低及场强的大小;根据电场力对带电粒子的做功情况判断粒子在A、B、C三点动能的大小关系。 【解析】
(1)设粒子在A点射入,则A点的轨迹切线方向就是粒子q的初速v0的方向(如图8-7
乙)。由于粒子q向偏离Q的方向偏转,因此粒子q受到Q的作用力是排斥力,故Q与q的电性相同,即Q带负电。
(2)因负电荷Q的电场线是由无穷远指向Q的,因此φA=φC>φB。 (3) 由电场线的疏密分布(或由E=kQ/r2)得
功WAC=QUAc
EA=EC (4) 因粒子从A→B电场力做负功,由动能定理可知EKB 知WAC=0,因此由动能定理得EKA=EKC,故EKA=EKC>EKB。 【总结】该种类型的题目分析方法是:先画出入射点轨迹的切线,即画出初速度v0的方向, 再根据轨迹的弯曲方向,确定电场力的方向,进而利用力学分析方法来分析其它有关的问题。 例7: 在图8-8中a、b和c表示点电荷a的电场中的三个等势面,它们的电势分别为U、 图8-7 U、U。一带电粒子从等势面a上某处由静止释放后,仅受电场力作用而运动,已知它经过等势面b时的速率为v,则它经过等势面c的速率为( 【审题】 ) 。 1.已知a、b、c三点的电势的大小关系为U>U>U,根据“电场线的方向总 是由电势高的等势面指向电势低的等势面”的性质, 图8-8 可分析出本题中的电场线方向是由场源点电荷Q为中心向四处放射的,而 这样分布电场线的场源点电荷应当是带正电的。 2.原来处于静止状态的带电粒子,若仅受电场力作用应做加速运动。应沿 着电场线的方向由电势高处向电势低处运动。 说明:前面所说的加速运动不一定是匀加速运动。只有在匀强电场中带电粒子才会作匀加速运动。在非匀强电场中(例如在点电荷场源的电场中)由于各处的电场强度不同,电荷所受的电场力的大小是变化的,所以加速度的大小也是变化的。 3.解答本题选用的主要关系式为:qUab?1212mva?mvb22 Uab为a、b两等势面的电势差, Va、vb为带电粒子经过时a、b等势面时的速率。(对于b、c两等势面也存在同样形式的关系式。) 【解析】 设:带电粒子的电量为q;a、b两等势面的电势差为Uab,b、c两等势面的电势差Ubc;带电粒子经过等势面a、b、c时的速率分别为Va、Vb、Vc。(已知:Va=0,Vb=v) 则: qUab=mvb2-mva2 ① qUac=mvc2-mva2 ② 得:vc=1.5vb=1.5v 所以,带电粒子经过等势面c的速度为1.5v。 【关键】带电粒子在非匀强电场中运动,牵扯到速度变化时通常用动能定理求解比较方便。 五、考虑受重力或其它恒力作用时的带电物体的运动问题 若带电微粒除受电场力作用外,还受到重力或其它恒力作用,同样要分解成两个不同方向的简单的直线运动来处理。 例8:如图所示,质量为m=5×10-8kg的带电粒子以v0=2 m/s的速度从水平放置的平行 金属板A、B中央飞入电场,已知板长L=10 cm,板间距离d=2 cm,当AB间加电压UAB=1000V时,带电粒子恰好沿直线穿过电场(设此时A板电势高)。 (1)带电粒子的电性,电荷量为多少? (2)恰好由边缘飞出,所加电压应为多大? 【审题】当UAB=103伏时,带电粒子恰好沿直线穿过板间,说明微粒的重力要考 图8-9 虑 要使带电粒子能从板间飞出,AB间所加电压必定是一个 围,从上板边缘飞出对应最高电压从下板边缘飞出对应最低电压,利用平衡条件、牛顿第二定律及运动学公式便可求出。 解: (1)UAB=103 V时,粒子做直线运动,有qU/d=mg,q=mgd/U=10-11 C,带负电。 (2)当电压UAB比较大时,qE>mg,粒子向上偏,qu1/d-mg=ma1 刚好能由A边缘飞出去:y=a1t2=a12=d/2 解之得U1=1800 V。 当电压UAB比较小时,qE 刚好能从下板边缘飞出有:mg-qU2/d=ma2, :y=a2t2=a2U2=200 V。 2=d/2 解之得 要使带电微粒能穿出极板,则两极板间的电压U应满足:U1<U<U2, 即:200V<U<1800V 【关键 】带电微粒受到电场力、重力作用,分解成两个不同方向的直线运动来处理。 例9:如图8-10所示,水平放置的A、B两平行板相距h,有一质量为m,带电量为+q的小球在B板之下H处以v0初速度竖直向上进入两板间,欲使小球恰好打到A处,试讨论A、B板间的电势差是多少? 【审题】小球在B板下方时,只受重力作用,做减速运动,小球进入到两板间时,除受向下的重力外,还受到电场力的作用,向上做减速运动,但由题设的条件,电场力的方向未知,需要分两种情况讨论解决。 【解析】当电场力向下时,ψA>ψB,由由两点间能量守恒得: 图8-10 1 QuAB-mg(H+h)= mv02, 2∴UAB=m[v02-2g(H+h)]/2q 当电场力向上时,φA<φB,由动能定理得 1 mg(H+h)- QuBA= mv02, 2∴UBA=m[2g(H+h)-v02]/2q 或全过程使用动能定理,但全过程使用动能定理简单。 例10:如图8-11所示:在方向水平向右的匀强电场中,一不可伸长的 【总结】本题在求解过程中可分段使用牛顿第二定律和运动学公式,也可分段使用动能定理 图8-11 不导电细线的一端连着一个质量为m的带正电的小球,另一端固定于O点。把小球拉起至细线与场强平行,然后无初速释放。已知小球摆到最低点的另一侧,线与竖直方向的最大夹角为θ。求:小球经过最低点时细线对小球的拉力。 【审题】 1. 两点的速度均为零,根据能的转化和守恒定律可知: 重力势能的减少量等于电势能的增加量。 2.小球从释放点到左侧最高点重力势能的减少量应该等于mglcosθ。 3.小球从释放点到左侧最高点电势能的增加量为qEl(1+ sinθ) 4.小球摆动的过程中,重力做正功(重力势能减少);电场力做负功(电势能增加),因此 正功与负功的代数和(即算术差)应当等于小球增加的动能。mgl?qEl?12mv2。 5.在解答本题时,还需使用圆周运动的向心力关系式,若设小球经过最低点时细线对小球 v2T?mg?ml。 的拉力为T,则应有:【解析】 (1)设细线长为l,场强为E,因电量为正,故场强的方向为水平向右。 从释放点到左侧最高点速度均为零。 由能量守恒有WG?WE??EK?0,故mglcos??qEl(1?sin?),解得E? (2)若小球运动到最低点的速度为v,此时线的拉力为T, 由能量守恒可得mgl?qEl?1mv2, 2mgcos? q(1?sin?)2cos?v2] 由牛顿第二定律得 T?mg?m,联立解得T?mg[3?1?sin?l【关键点】电场力、重力做功与路径无关,分别求每个分力的功比求合力的功简单。 解决电场中的圆周运动问题的基本方法和力学中的情形相同, 例11:如图8-12所示是静电分选器的原理示意图,将磷酸盐和石英的混合颗粒由传送带送至两个竖直的带电平行板上方,颗粒经漏斗从电场区域中央处开始下落,经分选后的颗粒分别装入A、B桶中,混合颗粒离开漏斗进入电场时磷酸盐颗粒带正电,石英颗粒带负电,所有颗粒所带的电量与质量之比均为10-5 C/kg.若已知两板间的距离为10 cm,两板的竖直高度为50 cm.设颗粒进入电场时的初速度为零,颗粒间相互作用不计.如果要求两 种颗粒离开两极板间的电场区域时有最大的偏转量且又恰好不接触到极板. (1)两极板间所加的电压应多大? (2)若带电平行板的下端距A、B桶底高度为H=1.3 m, 求颗粒落至桶底时速度的大小.(g=10 m/s2) 【审题】颗粒在竖直方向上受重力作用,竖直方向分运动为自由落体运动。 颗粒沿水平方向上受电场力作用,水平方向分运动为匀加速直线运动。 离开电场时颗粒在竖直方向为匀变速直线运动规律, 图8-12 【解析】 (1)颗粒在竖直方向上下落距离为极板高度L, 由自由落体运动公式得L=gt2 ① 颗粒沿水平方向的分运动为匀加速直线运动,加速度大小为a= ② 离开电场时颗粒在水平方向的位移为联立①、②、③式解得 ,由匀变速直线运动规律得: =at2 ③ U==1×104 V (2)在颗粒下落的整个过程中,根据动能定理得:代入数据得:v=36.1m/s≈6 m/s【关键点】分力产生分运动 (七)创新思维问题 qU+mg(L+H)= mv2 例12:(2003)为研究静电除尘,有人设计了一个盒状容器,容器侧面是绝缘的透明有机玻 璃,它的上下底面是面积A=0.04m2的金属板,间距L=0.05m,当连接到U=2500v的高压电源正负两极时,能在两金属板间产生一个匀强电场,如图8-13所示。现把一定量均匀分布的烟尘颗粒密闭在容器,每立方米有烟尘颗粒1013个,假设这些颗粒都处于静止状态,每个颗粒带电量为q=+1.0×10-17c,质量为m=2.0×10-15kg,不考虑烟尘颗粒之间的相互作用和空气阻力,并忽略烟尘颗粒所受重力。求合上电键后: (1)经过多少时间烟尘颗粒可以被全部吸收? (2)除尘过程中电场对烟尘颗粒共做了多少功? 图8-13 (3)经过多长时间容器中烟尘颗粒的总动能达到最大? 【审题】两金属板间为匀强电场,最上表面的烟尘颗粒被吸附到下板时, 烟尘被全部吸附。 烟尘均匀分散在盒子,等效处理为所有烟尘颗粒集中于极板中间位置。 求烟尘颗粒的总动能的最大值,需要列出总动能的表达式,然后求极值。 ⑴ 最靠近上表面的烟尘颗粒被吸附到下板时,烟尘就被全部吸附。 烟尘颗粒受到的电场力, ,故t=0.02s ⑵ W==1013 × 0.04 ×0.05×1.0×10-17 ×2.5×10-4J ⑶ 设烟尘颗粒下落距离为x
带电粒子在电场中运动解题三步法



