FMI成像测井解释方法及应用
李全厚,裴警博
【摘 要】全井眼地层微电阻率扫描成像测井,简称FMI.为了更好地应用FMI资料,使其在石油勘探开发中发挥更大的作用,通过观察FMI图像,分析总结出不同的岩性、结构和构造在FMI图像上的显示特征,建立起标准的FMI图像模式,再应用这些图像模式解释地质现象.在实际应用中,解决了很多常规测井无法解决的问题,尤其在探测复杂的非均质油气藏和裂缝性油气藏等领域具有独特的优势,在国际上得到了广泛的应用,取得了很好的效果.表明了该解释方法准确性高,应用价值强.
【期刊名称】哈尔滨商业大学学报(自然科学版) 【年(卷),期】2014(000)006 【总页数】6
【关键词】FMI;图像模式;构造;沉积相
FMI是最先进成像测井技术之一,是由斯伦贝谢公司研制的微电阻率扫描成像测井仪,仪器工作时记录了很多条微电阻率曲线,这些曲线反映了极板所扫过的地层的电阻率的变化特征,具有非常高的采样率和分辨率,可覆盖80%的井壁.经过数据处理和图像处理,将这些微电阻率曲线转换成图像,即FMI图像,其外观类似于岩心剖面,颜色的深浅表示电阻率的大小,电阻率越低,颜色越深.很适合用于识别裂缝、分析薄层、储层评价和沉积学研究[1],具有常规测井无法比拟的优势,在复杂油气储层的解释评价中发挥着越来越重要的作用.
1 FMI基本原理
1.1 仪器结构
FMI仪器有四个臂,每个臂上有一个主极板和一个折页极板(仪器外形结构如图1,极板结构如图2),每个极板上有两排电极,每排有12个电极(上下电极互相错开),上下两排电极之间距离0.3英寸,电极之间的横向间隔0.1英寸,主极板和副极板之间的垂向距离为5.7英寸.共计有4×2×2×12=192个测量钮扣电极,直接记录每个电极的电流强度及所施加的电压,再由仪器系数换算出反映井壁四周的地层微电阻率.深度采样间隔为0.1英寸,探测深度为 2英寸,仪器在测量深度方向和径向的分辨力均为0.2英寸,测井数据只是部分覆盖井壁,对于8英寸井眼的覆盖率为80%. 1.2 测量原理
FMI仪器的测量原理如图3所示,下部电极(包含极板和测量电极)和上部返回电极(金属外壳)之间保持一个已知电位差,它们之间用绝缘体隔开,这样保证电流从下部电极经过地层返回上部电极,在测井过程中,借助液压系统,各个测量极板紧贴井壁,外加电压驱使低频交流电从极板上的小电极通过导电泥浆流向地层,经过地层到达仪器上部的金属外壳形成回路,由于极板周围电位基本相同,沿着井壁方向产生了等电位面,同时对极板和测量电扣施加同极性的电流,同性相斥的原理使得极板电流对测量电流起到了聚焦的作用,确保测量电流以最佳角度流入地层,由于测量电扣接触的岩石成分、结构及所含流体的不同而引起电流的变化,记录下变化的电流即反映出井壁附近地层的电阻率的变化.
2 FMI图像分析
2.1 图像的生成
测得的192条微电阻率曲线经过主副极板上四排电极的深度对齐、平衡处理、
加速度校正、标准化、坏电极处理、图像生成等一系列步骤得到FMI图像.通常首先计算出微电阻率资料的频率直方图,然后把它们分成42个等级,每个等级具有相同的数据点(这使得每种颜色在最终图像上具有相同的面积),42个等级对应着42种颜色等级,从白色(高电阻)到黄色,一直到黑色(低电阻).或者由灰色变化到褐色,直观地反映地层电阻率的变化,从这些测量信息中,可提取井壁周围地层的信息 2.2 图像的类型 FMI可提供三种图像:
1)静态平衡图像,该类图像全井段统一配色,每种颜色代表着固定的电阻率范围,因此反映了整个测量井段的相对电阻率变化.
2)标定到浅侧向的静态图像,它是专门为了计算裂缝宽度等参数设计的,标定后的静态图像不仅反映井段微电阻率变化(不是相对变化),而且与浅侧向测井值对应,可用于岩相分析和地层划分.
3)动态加强图像,它是一种在用户选定的滑动深度窗口内(通常不超过3英尺),重新进行颜色刻度,突出局部井段电阻率变化,使得图像显示更详细的局部静态(全井段内动态)的图像显示方法.此时颜色更能揭示各种地质事件,如结构、构造、裂缝、结核、粒序变化、层理等,但此时颜色不再与电阻率具有一一对应关系,解释时需特别注意. 2.3 图像的模式
FMI图像的颜色、形态能充分反映地质、地球物理信息,可以结合区域地质资料刻度FMI资料,建立起标准图像模式,分类如下: 1)按照颜色不同,可分为:亮色、浅色、暗色和杂色.