第六章 统计热力学初步练习题
一、判断题:
1.当系统的U,V,N一定时,由于粒子可以处于不同的能级上,因而分布数不同,所 以系统的总微态数Ω不能确定。
2.当系统的U,V,N一定时,由于各粒子都分布在确定的能级上,且不随时间变化, 因而系统的总微态数Ω一定。
3.当系统的U,V,N一定时,系统宏观上处于热力学平衡态,这时从微观上看系统只 能处于最概然分布的那些微观状态上。
4.玻尔兹曼分布就是最概然分布,也是平衡分布。 5.分子能量零点的选择不同,各能级的能量值也不同。
6.分子能量零点的选择不同,各能级的玻尔兹曼因子也不同。 7.分子能量零点的选择不同,分子在各能级上的分布数也不同。 8.分子能量零点的选择不同,分子的配分函数值也不同。 9.分子能量零点的选择不同,玻尔兹曼公式也不同。
10.分子能量零点的选择不同,U,H,A,G四个热力学函数的数值因此而改变,但四 个函数值变化的差值是相同的。
11.分子能量零点的选择不同,所有热力学函数的值都要改变。 12.对于单原子理想气体在室温下的一般物理化学过程,若要通过配分函数来求过程热
t力学函数的变化值,只须知道q这一配分函数值就行了。
13.根据统计热力学的方法可以计算出U、V、N确定的系统熵的绝对值。
14.在计算系统的熵时,用lnWB(WB最可几分布微观状态数)代替1nΩ,因此可以认为WB与Ω大小差不多。
rr15.在低温下可以用q = T/σΘ来计算双原子分子的转动配分函数。
二、单选题:
1.下面有关统计热力学的描述,正确的是:
(A) 统计热力学研究的是大量分子的微观平衡体系 ; (B) 统计热力学研究的是大量分子的宏观平衡体系 ; (C) 统计热力学是热力学的理论基础 ;
(D) 统计热力学和热力学是相互独立互不相关的两门学科 。
2.在统计热力学中,物系的分类常按其组成的粒子能否被辨别来进行,按此原则,下列
说法正确的是:
(A) 晶体属离域物系而气体属定域物系 ;(B) 气体和晶体皆属离域物系 ; (C) 气体和晶体皆属定域物系 ; (D) 气体属离域物系而晶体属定域物系 。
3.在研究N、V、U有确定值的粒子体系的统计分布时,令∑ni = N,∑niεi = U,这是因为
所研究的体系是:
(A) 体系是封闭的,粒子是独立的 ; (B) 体系是孤立的,粒子是相依的 ; (C) 体系是孤立的,粒子是独立的 ; (D) 体系是封闭的,粒子是相依的 。
4.某种分子的许多可能级是εo、ε1、ε2,简并度为g0 = 1、g1 = 2、g2 = 1。5个可别粒子,
按N0 = 2、N1 = 2、N2 = 1的分布方式分配在三个能级上,则该分布方式的样式为: (A) 30 ; (B) 120 ; (C) 480 ; (D) 3 。
5.假定某种分子的许可能级是0、ε、2ε和3ε,简并度分别为1、1、2、3。四个这样的
分子构成的定域体系,其总能量为3ε时,体系的微观状态数为:
(A) 40 ; (B) 24 ; (C) 20 ; (D) 28 。
6.对热力学性质(U、V、N)确定的体系,下面描述中不对的是:
(A) 体系中各能级的能量和简并度一定 ; (B) 体系的微观状态数一定 ; (C) 体系中粒子在各能级上的分布数一定 ; (D) 体系的吉布斯自由能一定 。
7.对于定位体系,N个粒子分布方式D所拥有微观状态数WD为:
giNi(A) WD = N!πNi/Ni! ; (B) WD = N!πgi/Ni! ;
NiNi(C) WD = N!πgi/Ni ; (D) WD = πgi/Ni! 。
8.设一粒子体系由三个线性谐振子组成,体系的能量为 (11/2) hν,三个谐振子分别在三
个固定点a、b、c上振动,体系总的微观状态数为:
(A) 12 ; (B) 15 ; (C) 9 ; (D) 6 。 9.使用麦克斯韦 - 玻尔兹曼分布定律,要求粒子数N很大,这是因为在推出该定律时: (A) 假定粒子是可别的 ; (B) 应用了斯特令近似公式 ; (C) 忽略了粒子之间的相互作用 ; (D) 应用拉氏待定乘因子法 。
10.式子∑Ni = N和∑Niεi = U的含义是:
(A) 表示在等概率假设条件下,密封的独立粒子平衡体系 ; (B) 表示在等概率假设条件下,密封的独立粒子非平衡体系 ; (C) 表示密闭的独立粒子平衡体系 ; (D) 表示密闭的非独立粒子平衡体系 。
11.下面关于排列组合和拉格朗日求极值问题的描述正确的是:
(A) 排列组合都是对可别粒子而言的,排列考虑顺序,组合不考虑顺序 ; (B) 排列是对可别粒子而言的,而组合是对不可别粒子而言的 ;
(C) 拉格朗日未定因子法适用于自变量相互独立的多元函数的求极值问题 ;
(D) 拉格朗日未定因子法适用于一定限制条件下的不连续多元函数的求极值问题 。
n12.对于玻尔兹曼分布定律ni =(N/Q)·g·exp(-εi/kT) 的说法:⑴ ni是第i能级上的粒
子分布数;⑵ 随着能级升高,εi增大,ni总是减少的;⑶ 它只适用于可区分的独立 粒子体系;⑷ 它适用于任何的大量粒子体系。其中正确的是:
(A) ⑴⑶ ; (B) ⑶⑷; (C) ⑴⑵ ; (D) ⑵⑷。
13.玻尔兹曼统计认为:
(A) 玻尔兹曼分布不是最可几分布但却代表平衡分布 ; (B) 玻尔兹曼分布只是最可几分布但不代表平衡分布 ; (C) 玻尔兹曼分布不是最可几分布也不代表平衡分布 ; (D) 玻尔兹曼分布就是最可几分布也代表平衡分布 。
14.对于分布在某一能级εi上的粒子数ni,下列说法中正确是:
(A) ni与能级的简并度无关; (B) εi值越小,ni值就越大 ; (C) ni称为一种分布; (D) 任何分布的ni都可以用波尔兹曼分布公式求出。
15.在N个独立可别粒子组成体系中,最可几分布的微观状态数tm与配分函数Q之间的
关系为:
N(A) tm = 1/N! ·q ;
NU/kT (C) tm = q·e;
16.I2分子的振动能级间隔是 × 10J,则在298K时某一振动能级和其较低能级上分 子数之比为:
-20
(A) 1 ; (B) × 10 ; (C) ; (D) 无法计算。
17.在已知温度T时,某种粒子的能级εj = 2εi,简并度gi = 2gj,则εj和εi上分布的粒子
数之比为:
(A) ?exp(εj/2kT) ; (B) 2exp(-εj/2kT) ; (C) ?exp(-εj/2kT) ; (D) 2exp(-2εj/kT) 。
-1
18.如分子第一激发态的能量为400kJ·mol,则体系中10% 的分子被激发到第一激发态
时,体系的温度(K)是:
443 5
(A) × 10 ; (B) × 10 ; (C) × 10; (D) × 10 。
19.I2的振动特征温度ΘV = 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = ?的温度是:
(A) 306K ; (B) 443K ; (C) 760K ; (D) 556K 。
20.某一理想气体体系由含NA个A分子与NB个B分子的两个体系组成。分子配分函数 分别为qA、qB,若不考虑分子间相互作用,则体系配分函数表示为:
NAqNBNANB
(A) qAB/(NA + NB)! ; (B) qA·qB ;
NANBNA + NB
(C) qA/N!·qB/NB! ; (D) (qA·qB)。
21.下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关: (A) S、G、F、CV ; (B) U、H、P、CV ; (C) G、F、H、U ; (D) S、U、H、G 。
22.各种运动形式的配分函数中与压力有关的是:
(A) 电子配分函数 ; (B) 平动配分函数 ; (C) 转动配分函数 ; (D) 振动配分函数 。
23.分子运动的振动特征温度Θv是物质的重要性质之一,下列正确的说法是: (A) Θv越高,表示温度越高; (B) Θv越高,表示分子振动能越小; (C) Θv越高,表示分子处于激发态的百分数越小; (D) Θv越高,表示分子处于基态的百分数越小。
24.下列哪个体系不具有玻尔兹曼-麦克斯韦统计特点 : (A) 每一个可能的微观状态以相同的几率出现;
(B) 各能级的各量子态上分配的粒子数,受保里不相容原理的限制; (C) 体系由独立可别的粒子组成,U = ∑niεi ; (D) 宏观状态参量 N、U、V 为定值的封闭体系。
-20
(B) tm = 1/N! ·q·e
NU/kT (D) tm = N! q·e。
NU/kT ;