好文档 - 专业文书写作范文服务资料分享网站

《风险管理与控制》复习

天下 分享 时间: 加入收藏 我要投稿 点赞

《风险管理与控制》复习题

(注意:第一题收益分布是两点分布,用下面解法,如果收益分布为连续分布,用课本解法,总之,结合两个定义,1、VaR是给定置信水平下,某一金融资产或证券投资组合在未来特定时间内的最大损失额,2、期望尾损:即在某尾部概率区间的期望损失)

一、假设两项投资中的任何一项都有0.9%的可能触发损失5亿美元,而有99.1%的可能触发损失1亿美元,并且有正收益的概率为0,这两项投资相互独立。

(a)对应于 99%的置信水平,任意一项投资的VaR是多少?

因为任何一项投资有99.1%得可能出发损失1亿美元,有0.9%得可能触发损失5亿美元,而99%<99.1%,则在90%的把握下,损失最大为1亿美元,即VaR=1亿美元。

(b)选定99%的置信水平,任意一项投资的预期损失是多少?

在1%的尾部分布中,有0.1%的概率损失为1亿美元,有0.9%的概率损失为5亿美元,即在1%的尾部分布范围内,有10%的概率损失为1亿美元,90%的概率损失为五亿美元,预期亏损为0.1×1+0.9×5=4.6亿美元。

(c)将两项投资叠加在一起所产生的投资组合对应于99%的置信水平的VaR是多少?

将两项投资叠加产生一个投资组合,则组合有0.009×0.009=0.000081,即0.0081%的概率损失5+5=10亿美元;有2×0.009×0.991=0.017838,即1.7838%的概率损失1+5=6亿美元;有0.991×0.991=0.982081,即98.2081%的概率损失1+1=2亿美元。

因为98.2081%<99%<98.2081%+1.7838%,所以组合的VaR=6亿美元。

(d)将两项投资叠加在一起所产生的投资组合对应于99%的置信水平的期望尾损是多少?

将两项投资叠加产生一个投资组合,在1%的尾部分布中,有0.0081%概率损失为1100万美元,即在1%的尾部分布的范围内,预期亏损为(0.0081/1)×10+(0.9919/1)×6=6.0324亿美元。

(e)请详细说明此例的VaR和期望尾损各自是否满足次可加性?

单笔投资所对应的VaR的和为2亿美元,组合的VaR为6亿美元,由于2<6,这违反了次可加性。

单笔投资所对应的预期亏损的和为4.6×2=9.2亿美元,组合的预期亏损为6.0324亿美元,9.2>6.0324,则满足次可加性。

二、说明风险测度的一致性,并举例说明VaR不满足一致性。 (一)风险测度的一致性

Artzner et al.(1999)分析了风险测度应该有的性质,并假定自然状态的数量是有限的。该风险测度m(.)可以用于任意市场价值为随机变量X的投资组合,由此得到风险值m(X)。如果一个风险测度满足以下四个公理,则把它称为一致的:

1.次可加性:对于任何投资组合收益X和Y,有m(X+Y)<=m(X)+m(Y) 2.齐次性:对于任何数字a>0,m(aX)= am(X) 3.单调性:如果X>=Y,m(X)>=m(Y)

4.无风险条件:对于任何常数k,m(X+k)=m(X)+k

(二)VaR满足齐次性、单调性和无风险条件,但是不满足次可加性。因此不满足一致性。在对各业务单元(例如交易柜台或部门)的风险测试汇总的时候,这是一个潜在的严重的局限性,因为次可加性的缺失意味着分散化并不能降低风险。例如,假设X和Y是独立同分布的两项贷款的回收额,其中每一项都以0.994的概率偿还本金100,否则违约而且回收额为0,如果我们的风险测度m(.)是置信水平99%下的VaR,那么m(X)=m(Y)=0,因为损失的概率在VaR度量的”雷达区之外”,VaR只能捕获到发生概率至少为0.01的损失。另一方面,设想一项投资组合由这两项贷款的各50%组成,我们得到m(X/2+Y/2)=50,因为至少一种债券违约的概率正好超过1%,两个都违约的概率小于1%,因此,作为风险测度方法,VaR并不支持资产分散化以降低风险的传统认识。

ì0.01t?[0,0.5]??l(t)=三、假定面值为$100的一年期的债券违约强度为,求债í?0.02t?[0.5,1]??券在一年内违约的概率,若该债券的实际期望收益率为8%,求该债券的当前价

格。

解:债券生存一年的概率是

=0.985

则债券在一年内违约的概率为1-P(t)=0.015 100×0.985=X×(1+0.08) 其中X=91.2

该债券的当前价格为91.2元。

四、若当前的的资产负债比例为10:1,债务价值保持不变,资产价值变化过程服从以下模型

dAt=0.04dt+0.1dBt t(一)求当前违约距离;

由Black-Scholes-Merton模型(3.5)

u-y=0.04 σ= 0.1

违约距离为:

????lnln?????ln??ln10

????==??==23.02

????0.1

(二)设违约边界是公司的债务价值,运用首次通过模型计算从当前开始在三年内违约的概率。

??(??,??)=??(????≥0,??≤??≤??|????)=??(????,?????)

??+???????+????

H(x,s)=N()????2??????()

√??√??????????

2=0.35 且漂移系数m=

??2

得:P(t,t+3)=H(Xt, 3)=N(24.07√3)=?e-7N(?21.97√3)

=N(13.93)?e-7N(?12.68) =Φ(13.93)?e-7 Φ(?12.68)

?1

违约概率

p?1?p(t,t?3)?0

五、在带有跳跃的强度模型中,已知跳跃之间的违约强度满足

dl(t)=0.4[0.01-l(t)] t假设跳跃过程为复合泊松过程,跳跃强度为c=??.??????,跳跃幅度数学期望为

J=6 ,求时刻2到3之间违约的概率。

P(2,3)=????(1)+??(1)??(2) 1????0.4

??(1)=?

0.4??(1)=?0.01×(1?

1????0.40.4

)???+0.4×[J?ln(1+

0.002

1????0.40.4

??)]

????(??)????

=0.4[0.01???(??)]

得???(??)=????????????

求得生存概率p(2,3)=0.44 违约概率p?1?p(2,3)=0.56

六、在带有跳跃的强度模型中,已知跳跃之间的风险中性违约强度满足

dl*(t)*=0.5?[0.002l(t)], *l(t)

《风险管理与控制》复习

《风险管理与控制》复习题(注意:第一题收益分布是两点分布,用下面解法,如果收益分布为连续分布,用课本解法,总之,结合两个定义,1、VaR是给定置信水平下,某一金融资产或证券投资组合在未来特定时间内的最大损失额,2、期望尾损:即在某尾部概率区间的期望损失)一、假设两项投资中的任何一项都有0.9%的可能触发损失5亿美元,而有99.1%的可能触发损失
推荐度:
点击下载文档文档为doc格式
1flo49v6ly6d7jn4l8uv58u602x74s012nk
领取福利

微信扫码领取福利

微信扫码分享