好文档 - 专业文书写作范文服务资料分享网站

2024-2024年高考数学一轮复习第二章函数导数及其应用2.11.3导数的综合应用课时提升作业理

天下 分享 时间: 加入收藏 我要投稿 点赞

2024-2024年高考数学一轮复习第二章函数导数及其应用2.11.3导数的综合应

用课时提升作业理

一、选择题(每小题5分,共25分)

1.从边长为10cm×16cm的矩形纸板的四角截去四个相同的小正方形,作成一个无盖的盒子,则盒子容积的最大值为 ( ) A.12cm

3

B.72cm

3

3

C.144cm

3

D.160cm

3

【解析】选C.设盒子容积为ycm,盒子的高为xcm,则x∈(0,5). 则y=(10-2x)(16-2x)x=4x-52x+160x,

所以y′=12x-104x+160.令y′=0,得x=2或(舍去), 所以ymax=6×12×2=144(cm).

2.在R上可导的函数f(x)的图象如图所示,则关于x的不等式x·f′(x)<0的解集为 ( ) A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞) C.(-2,-1)∪(1,2) D.(-∞,-2)∪(2,+∞)

【解析】选A.当x∈(-∞,-1)和x∈(1,+∞)时,f(x)是增函数,所以f′(x)>0,由x·f′(x)<0,得x<0,所以x<-1.

当x∈(-1,1)时,f(x)是减函数,所以f′(x)<0. 由x·f′(x)<0,得x>0,所以0

3.若不等式2xlnx≥-x+ax-3对x∈(0,+∞)恒成立,则实数a的取值范围 是 ( ) A.(-∞,0) C.(0,+∞)

22

3

2

3

2

B.(-∞,4] D.[4,+∞)

【解析】选B.2xlnx≥-x+ax-3, 则a≤2lnx+x+, 设h(x)=2lnx+x+(x>0), 则h′(x)=.

当x∈(0,1)时,h′(x)<0,函数h(x)单调递减; 当x∈(1,+∞)时,h′(x)>0,函数h(x)单调递增,

所以h(x)min=h(1)=4,所以a≤h(x)min=4.

4.若a>2,则函数f(x)=x-ax+1在区间(0,2)上恰好有 ( ) A.0个零点 C.2个零点

2

3

2

B.1个零点 D.3个零点

【解析】选B.因为f′(x)=x-2ax,且a>2, 所以当x∈(0,2)时,f′(x)<0, 即f(x)在(0,2)上是单调减函数. 又因为f(0)=1>0,f(2)=-4a<0, 所以f(x)在(0,2)上恰好有1个零点.

5.(xx·绵阳模拟)已知函数f(x)=给出如下三个命题: ①f(x)在(,+∞)上是减函数; ②f(x)≤在R上恒成立;

③函数y=f(x)图象与直线y=-有两个交点. 其中真命题的个数为 ( ) A.3个

B.2个

C.1个

x

D.0个

【解析】选B.当x<0时,函数f(x)=e+x-1显然是增函数;

当x≥0时,函数f(x)=-x+2x, f′(x)=-x+2且f(0)=0,

所以函数在[0,)上单调递增,在[,+∞)上单调递减, f(x)极大值=f()=,由此画出函数大致图象,故①,③正确. 二、填空题(每小题5分,共15分)

6.直线y=a与函数f(x)=x-3x的图象有相异的三个公共点,则a的取值范围是 . 【解析】令f′(x)=3x-3=0,得x=±1, 可得极大值为f(-1)=2,极小值为f(1)=-2, 如图,观察得-2

2

3

2

3

答案:(-2,2)

7.电动自行车的耗电量y与速度x之间有关系y=x-x-40x(x>0),为使耗电量最小,则速度应定为 . 【解析】由y′=x-39x-40=0,得x=-1(舍去)或x=40, 由于040时,y′>0.

所以当x=40时,y有最小值. 答案:40

8.(xx·邯郸模拟)设函数f(x)=6lnx,g(x)=x-4x+4,则方程f(x)-g(x)=0有 个实根.

【解析】设φ(x)=g(x)-f(x)=x-4x+4-6lnx, 则φ′(x)==,且x>0.

由φ′(x)=0,得x=3.当03时, φ′(x)>0. 所以φ(x)在(0,+∞)上有极小值 φ(3)=1-6ln3<0.

故y=φ(x)的图象与x轴有两个交点, 则方程f(x)-g(x)=0有两个实根. 答案:2

三、解答题(每小题10分,共20分) 9.(xx·湛江模拟)已知函数f(x)=lnx-. (1)若a>0,试判断f(x)在定义域内的单调性. (2)若f(x)

因为a>0,所以f′(x)>0, 故f(x)在(0,+∞)上是增函数.

2

2

2

2

3

2

2024-2024年高考数学一轮复习第二章函数导数及其应用2.11.3导数的综合应用课时提升作业理

2024-2024年高考数学一轮复习第二章函数导数及其应用2.11.3导数的综合应用课时提升作业理一、选择题(每小题5分,共25分)1.从边长为10cm×16cm的矩形纸板的四角截去四个相同的小正方形,作成一个无盖的盒子,则盒子容积的最大值为()A.12cm3B.72cm3
推荐度:
点击下载文档文档为doc格式
1e3b0759go2xzhu2kzn0175lm26knl009wb
领取福利

微信扫码领取福利

微信扫码分享