2009年高考数学压轴题系列训练含答案及解析详解五
1.(本小题满分14分)
x2y2已知椭圆2?2?1(a?b?0)的左、右焦点分别是F1(-c,0)、F2(c,0),Q
ab是椭圆外的动点,满足|F1Q|?2a.点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足PT?TF2?0,|TF2|?0.
(Ⅰ)设x为点P的横坐标,证明|F1P|?a? (Ⅱ)求点T的轨迹C的方程;
(Ⅲ)试问:在点T的轨迹C上,是否存在点M, 使△F1MF2的面积S=b2.若存在,求∠F1MF2
的正切值;若不存在,请说明理由.
cx; a本小题主要考查平面向量的概率,椭圆的定义、标准方程和有关性质,轨迹的求法和应用,以及综合运用数学知识解决问题的能力.满分14分. (Ⅰ)证法一:设点P的坐标为(x,y).
由P(x,y)在椭圆上,得
b22|F1P|?(x?c)?y?(x?c)?b?2xa
c?(a?x)2.a2222由x?a,知a?ccx??c?a?0,所以 |F1P|?a?x.………………………3分 aa证法二:设点P的坐标为(x,y).记|F1P|?r1,|F2P|?r2,
则r1?(x?c)2?y2,r2?(x?c)2?y2.
cx. ac证法三:设点P的坐标为(x,y).椭圆的左准线方程为a?x?0.
a由r1?r2?2a,r12?r22?4cx,得|F1P|?r1?a?
2cac|FP|c由椭圆第二定义得,即|F1P|?|x?1|?|a?x|. ?acaaa2|x?|c 由x??a,知a?ccx??c?a?0,所以|F1P|?a?x.…………………………3分 aa(Ⅱ)解法一:设点T的坐标为(x,y).
当|PT|?0时,点(a,0)和点(-a,0)在轨迹上.
当|PT|?0且|TF2|?0时,由|PT|?|TF2|?0,得PT?TF2. 又|PQ|?|PF2|,所以T为线段F2Q的中点. 在△QF1F2中,|OT|?1|F1Q|?a,所以有x2?y2?a2. 2222综上所述,点T的轨迹C的方程是x?y?a.…………………………7分 解法二:设点T的坐标为(x,y). 当|PT|?0时,点(a,0)和点(-a,0)在轨迹上.
当|PT|?0且|TF2|?0时,由PT?TF2?0,得PT?TF2. 又|PQ|?|PF2|,所以T为线段F2Q的中点. ?x???设点Q的坐标为(x?,y?),则??y???x??c,2 y?.2
因此??x??2x?c, ①
?y??2y.222
由|F1Q|?2a得(x??c)?y??4a. ② 将①代入②,可得x?y?a.
综上所述,点T的轨迹C的方程是x?y?a.……………………7分
222222 (Ⅲ)解法一:C上存在点M(x0,y0)使S=b2的充要条件是
22?x0?y0?a2, ? ?12??2c|y0|?b.?2③ ④
2b2. 所以,当a?b时,存在点M,使S=b2; 由③得|y0|?a,由④得|y0|?cc2b当a?时,不存在满足条件的点M.………………………11分 c
2当a?b时,MF1?(?c?x0,?y0),MF2?(c?x0,?y0),
c222222由MF1?MF2?x0?c?y0?a?c?b,
MF1?MF2?|MF1|?|MF2|cos?F1MF2,
S?1|MF1|?|MF2|sin?F1MF2?b2,得tan?F1MF2?2. 2解法二:C上存在点M(x0,y0)使S=b2的充要条件是
22③ ?x0?y0?a2,? ?1
2??2c|y0|?b.④ ?2
b2b4b2b222. 上式代入③得x0?a?2?(a?)(a?)?0. 由④得|y0|?cccc2b于是,当a?时,存在点M,使S=b2; c2当a?b时,不存在满足条件的点M.………………………11分
c
2y0y0b当a?时,记k1?kFM?, ,k?k?2F2M1x0?cx0?cc由|F1F2|?2a,知?F1MF2?90?,所以tan?F1MF2?|k1?k2|?2.…………14分
1?k1k22.(本小题满分12分)
函数y?f(x)在区间(0,+∞)内可导,导函数f?(x)是减函数,且f?(x)?0. 设
x0?(0,??),y?kx?m是曲线y?f(x)在点(x0,f(x0))得的切线方程,并设函数g(x)?kx?m.
(Ⅰ)用x0、f(x0)、f?(x0)表示m; (Ⅱ)证明:当x0?(0,??)时,g(x)?f(x);
3 (Ⅲ)若关于x的不等式x?1?ax?b?x3在[0,??)上恒成立,其中a、b为实数,
222 求b的取值范围及a与b所满足的关系.
本小题考查导数概念的几何意义,函数极值、最值的判定以及灵活运用数形结合的思想判断函数之间的大小关系.考查学生的学习能力、抽象思维能力及综合运用数学基本关系解决问
题的能力.满分12分
(Ⅰ)解:m?f(x0)?x0f?(x0).…………………………………………2分 (Ⅱ)证明:令h(x)?g(x)?f(x),则h?(x)?f?(x0)?f?(x),h?(x0)?0. 因为f?(x)递减,所以h?(x)递增,因此,当x?x0时,h?(x)?0;
当x?x0时,h?(x)?0.所以x0是h(x)唯一的极值点,且是极小值点,可知h(x)的
最小值为0,因此h(x)?0,即g(x)?f(x).…………………………6分
(Ⅲ)解法一:0?b?1,a?0是不等式成立的必要条件,以下讨论设此条件成立. x?1?ax?b,即x?ax?(1?b)?0对任意x?[0,??)成立的充要条件是 a?2(1?b).
另一方面,由于f(x)?3x3满足前述题设中关于函数y?f(x)的条件,利用(II)的结
22212222333果可知,ax?b?x的充要条件是:过点(0,b)与曲线y?x3相切的直线的斜率大于a,22该切线的方程为y?(2b)2x?b.
于是ax?b?3x3的充要条件是a?(2b)2.…………………………10分 22?11
3综上,不等式x?1?ax?b?x3对任意x?[0,??)成立的充要条件是
222
(2b)?12?a?2(1?b). ①
?1212显然,存在a、b使①式成立的充要条件是:不等式(2b)有解、解不等式②得
?2(1?b). ②
122?22?2?b?. ③ 44因此,③式即为b的取值范围,①式即为实数在a与b所满足的关系.…………12分
(Ⅲ)解法二:0?b?1,a?0是不等式成立的必要条件,以下讨论设此条件成立. x?1?ax?b,即x?ax?(1?b)?0对任意x?[0,??)成立的充要条件是 a?2(1?b).………………………………………………………………8分
1222
23333令?(x)?ax?b?x,于是ax?b?x对任意x?[0,??)成立的充要条件是
222
?(x)?0. 由??(x)?a?x?13?0得x?a?3.
当0?x?a?3时??(x)?0;当x?a?3时,??(x)?0,所以,当x?a?3时,?(x)取最
?3小值.因此?(x)?0成立的充要条件是?(a)?0,即a?(2b)
22?12.………………10分
综上,不等式x?1?ax?b?3x3对任意x?[0,??)成立的充要条件是
2(2b)?12?a?2(1?b). ①
?1212显然,存在a、b使①式成立的充要条件是:不等式(2b)有解、解不等式②得2?2?b?2?2.
44?2(1?b) ②
12因此,③式即为b的取值范围,①式即为实数在a与b所满足的关系.…………12分
3.(本小题满分12分)
*已知数列?an?的首项a1?5,前n项和为Sn,且Sn?1?Sn?n?5(n?N)
(I)证明数列?an?1?是等比数列;
2(II)令f(x)?a1x?a2x??anxn,求函数f(x)在点x?1处的导数f?(1)并比较2f?(1)与23n?13n的大小.
*解:由已知Sn?1?Sn?n?5(n?N)可得n?2,Sn?2Sn?1?n?4两式相减得
2Sn?1?Sn?2?Sn?Sn?1??1即an?1?2an?1从而an?1?1??2an??1当
n?1时
S2?2S1?1?5所以a2?a1?2a1?6又a1?5所以a2?11从而a2?1?2?a1?1?
*故总有an?1?1?2(an?1),n?N又a1?5,a1?1?0从而
an?1?1?2即数列?an?1?是等
an?1比数列;
n(II)由(I)知an?3?2?1 2因为f(x)?a1x?a2x??anxn所以f?(x)?a1?2a2x??nanxn?1
从而f?(1)?a1?2a2??nan=?3?2?1??23?22?1????n(3?2n?1)
高考数学压轴题系列训练



