¶àÔª»ìãçʱ¼äÐòÁеÄÏà¹Ø״̬»úÔ¤²âÄ£ÐÍÑо¿
º«Ãô;ÐíÃÀÁá;ÈÎΰ½Ü
¡¾ÆÚ¿¯Ãû³Æ¡¿¡¶×Ô¶¯»¯Ñ§±¨¡· ¡¾Äê(¾í),ÆÚ¡¿2014(000)005
¡¾ÕªÒª¡¿Õë¶Ô¶àÔª»ìãçʱ¼äÐòÁÐÔ¤²â´æÔڵĹýÄâºÏÎÊÌâ¼°¸ßάÊäÈë±äÁ¿ÈßÓàÎÊÌ⣬Ìá³öÒ»ÖÖÐÂÐ͵Ķà±äÁ¿Ï¡Ê軯Ԥ²âÄ£ÐÍ¡ª¶àÔªÏà¹Ø״̬»ú¡£¸ÃÄ£ÐͲÉÓÃÖ÷³É·Ö·ÖÎö·½·¨¶ÔÏà¿Õ¼äÖع¹ºóµÄ¸ßάÊäÈë±äÁ¿½øÐеÍά±íʾ£¬½«¶¯Ì¬´¢±¸³Ø×÷ΪÏà¹ØÏòÁ¿»úµÄºËº¯Êý£¬³ä·ÖÓ³Éä¶àÔª»ìãçʱ¼äÐòÁеĶ¯Á¦Ñ§ÌØÐÔ£¬Ê¹µÃÄ£Ð;ßÓзḻµÄ¶¯Ì¬»úÖƺÍÁ¼ºÃµÄÏ¡ÊèÐÔÄÜ£¬ÓÐЧ±ÜÃâ¹ýÄâºÏÎÊÌ⣬Ìá¸ßÔ¤²â¾«¶È¡£»ùÓÚÁ½×é¶àÔª»ìãçʱ¼äÐòÁеķÂÕæʵÑéÑéÖ¤ÁËÄ£Ð͵ÄÓÐЧÐÔ¡£%Considering that there may be overfitting problem, as well as the problem of high dimensional redundant input variables in multivariate chaotic time series prediction, we introduce a novel multivariate prediction model based on relevance vector machine and echo state network, named multivariate relevance state machine (mRSM). The proposed model reconstructs the multivariate chaotic time series into the phase space, then reduces the dimension of input variables with the principal component analysis method. Subsequently, the mRSM uses a reservoir, replacing kernel functions of relevance vector machine, to map the dynamic features of multivariate time series su?ciently. Therefore, the mRSM presents rich dynamics and good sparsity. Furthermore, it avoids overfitting, and improves the predictive accuracy. Simulation results,
¶àÔª»ìãçʱ¼äÐòÁеÄÏà¹Ø״̬»úÔ¤²âÄ£ÐÍÑо¿
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)