定积分的概念教案
教材内容分析 学生情况分析 教学目标 教学重点 教学难点 教学方式 辅助工具 引入新课 类比探究, 形成方法 定积分的概念 人教A版必修一教材 微积分的出现和发展,极大的推动了数学的发展,同时也推动了天文学、力学、物理学、化学、生物学等自然科学、社会科学及应用科学各个分支中的发展。本节课是定积分概念的第一节课,教材借助求曲边梯形的面积和物理中变速直线运动的路程,通过直观具体的实例引入到定积分的学习中,为定积分概念构建认知基础,为理解定积分概念及几何意义起到了铺垫作用,同时也为今后进一步学习微积分打下基础。 本节课的教学对象是本校实验班学生,学生思维比较活跃,理解能力、运算能力和学习交流能力较强。学生前面已经学习了导数,并利用导数研究函数的单调性、极值及生活中的优化问题等,渗透了微分思想。从学生的思维特点看,比较容易把刘徽的“割圆术”与本节课知识联系到一起,能够初步了解到“以直代曲”和“无限逼近”的重要数学思想,但是在具体的“以直代曲”过程中,如何选择适当的直边图形来代替曲边梯形会有一些困难。在对“极限”和“无限逼近”的理解,即理解为什么将直边图形面积和取极限正好是曲边梯形面积的精确值及在对定积分定义的归纳中符号的理解上也会有一些困难。 1.从物理问题情境中了解定积分概念的实际背景,初步掌握求曲边梯形的面积的方法和步骤: 分割、近似代替、求和、取极限; 2.经历求曲变梯形面积的过程,借助几何直观体会“以直代曲”和“逼近”的思想,学习归纳、类比的推理方式,体验从特殊到一般、从具体到抽象、化归与转化的数学思想; 3.认同“有限与无限的对立统一”的辩证观点,感受数学的简单、简洁之美. 直观体会定积分的基本思想方法:“以直代曲”、“无限逼近”的思想; 初步掌握求曲边梯形面积的方法步骤——“四步曲”(即:分割、近似代替、求和、取极限) 对“以直代曲”、“逼近” 思想的形成过程的理解. 教师适时引导和学生自主探究发现相结合. 投影展台,几何画板. 教 学 过 程 问题:汽车以速度v做匀速直线运动时,经过时间t所行驶的路程为S?vt.如果汽车作变速直线运动,在时刻t的速度为v?t??t2(单位:km/h),那么它在0≤t≤1(单位:h)这段时间内行驶的路程S(单位:km)是多少? 如图,阴影部分类似于一个梯形,但有一边是曲线y?f(x)的一段,我们把由直线x?a,x?b(a?b),y?0和曲线y?f(x)所围成的图形称为曲边梯形. 如何计算这个曲边梯形的面积? (1)温故知新,铺垫思想 问题1:我们在以前的学习经历中有没有用直边图形的面积计算曲边图形面积这样的例子? 问题2:在割圆术中为什么用正多边形的面积计算圆的面积?为什么要逐次加倍正多边形的边数? (2)类比迁移,分组探究 问题3:能不能类比割圆术的思想和操作方法把曲边梯形的面积问题转化为直边图形的面积问题? 学生活动:学生进行分组讨论、探究。 (3)汇报比较,形成方法 创设情境,引入这节课所要研究的问题. 学生需要用原有的知识与经验去同化或顺应当前要学习的新知识,所以问题1引导学生回忆割圆术的作法,通过问题2引导学生思考割圆术中的思想方法----“以直代曲”,和“无限逼近”。 通过问题3激发学生探索的愿望,明确解决问题的方向。 学生进行汇报、交流,得出不同的分割方案。 问题4:请比较不同方案的区别,哪种方案既实现了“以直代曲”,和“无限逼近”,又更便于实际操作? 特例应用, 细化操作 例1:求图中阴影部分是由抛物线y?x,直线x?1以及x轴所围成的平面图形的面积S。 问题1:为了逐步减小误差,需要对曲边梯形进行分割,具体怎样分割? 问题2:对每个小曲边梯形如何“以直代曲”? 2 (1) (2) 问题3:如何得到整个曲边梯形的面积? 问题4:直边图形的面积怎样才能越来越接近曲边梯形面积的准确值?能否得到准确值? ①图形方式: ②数表方式: 通过问题4引导学生选择便于操作的方案,培养学生化繁为简的意识。 由于分割和近似代替的方案在前面一个阶段已经解决,问题1~3主要引导学生在特例中对方案进行细化操作,初步经历分割、近似代替及求和的过程。 问题4是为了完成从近似值到精确值的转化,这也是本节课的难点之一。为了突破这个难点,教学中用图形、数表和取极限三种方式引导学生经历从直观到抽象的过程。